Biochemical Principles in Prion-Based Inheritance.

Epigenomes

Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.

Published: January 2022

Prions are proteins that can stably fold into alternative structures that frequently alter their activities. They can self-template their alternate structures and are inherited across cell divisions and generations. While they have been studied for more than four decades, their enigmatic nature has limited their discovery. In the last decade, we have learned just how widespread they are in nature, the many beneficial phenotypes that they confer, while also learning more about their structures and modes of inheritance. Here, we provide a brief review of the biochemical principles of prion proteins, including their sequences, characteristics and structures, and what is known about how they self-template, citing examples from multiple organisms. Prion-based inheritance is the most understudied segment of epigenetics. Here, we lay a biochemical foundation and share a framework for how to define these molecules, as new examples are unearthed throughout nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883993PMC
http://dx.doi.org/10.3390/epigenomes6010004DOI Listing

Publication Analysis

Top Keywords

biochemical principles
8
prion-based inheritance
8
principles prion-based
4
inheritance prions
4
prions proteins
4
proteins stably
4
stably fold
4
fold alternative
4
structures
4
alternative structures
4

Similar Publications

The proteome is a terminal electron acceptor.

Proc Natl Acad Sci U S A

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Microbial metabolism is impressively flexible, enabling growth even when available nutrients differ greatly from biomass in redox state. , for example, rearranges its physiology to grow on reduced and oxidized carbon sources through several forms of fermentation and respiration. To understand the limits on and evolutionary consequences of this metabolic flexibility, we developed a coarse-grained mathematical framework coupling redox chemistry with principles of cellular resource allocation.

View Article and Find Full Text PDF

At presynaptic active zones (AZs), scaffold proteins are critical for coordinating synaptic vesicle release and forming essential nanoarchitectures. However, regulatory principles steering AZ scaffold assembly, function, and plasticity remain insufficiently understood. We here identify an additional Drosophila AZ protein, "Blobby", essential for proper AZ nano-organization.

View Article and Find Full Text PDF

Development and longitudinal neurocognitive functioning in mucopolysaccharidosis type IIIC: a case study.

J Appl Genet

December 2024

Psychological Counselling for Rare Genetic Diseases, Institute of Psychology, Faculty of Social Science, University of Gdansk, Bażynskiego, 4, 80-309, Gdańsk, Poland.

This case study presents a comprehensive analysis of the neurocognitive, medical, and developmental functioning of a 9-year-old girl diagnosed with mucopolysaccharidosis type IIIC (MPS IIIC). Genetic testing revealed a homozygous pathogenic variant of the HGSNAT gene (c.1872C > A), typically associated with severe neurodegeneration.

View Article and Find Full Text PDF

Retinoblastoma, a rare childhood eye cancer, has hereditary and non-hereditary forms. While TNM classification helps in prognosis, understanding molecular mechanisms is vital for the clinical behavior of retinoblastoma prediction. Our study aimed to analyze the expression levels of key Wnt pathway proteins, GSK3β, LEF1, β-catenin, and DVL1, and associate them to non-phosphorylated active form (pRb) and the phosphorylated inactive form (ppRb) and N-myc expression, in retinoblastoma cells and healthy retinal cells, in order to elucidate their roles in retinoblastoma and identify potential targets that could help to improve diagnostic and therapy.

View Article and Find Full Text PDF

Background: Klebsiella pneumoniae is a clinically relevant pathogen that has raised considerable public health concerns. This study aims to determine the presence of beta-lactamase genes and perform molecular genotyping of multidrug-resistant (MDR) K. pneumoniae clinical isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!