D-Amino Acids as a Biomarker in Schizophrenia.

Diseases

Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.

Published: January 2022

D-amino acids may play key roles for specific physiological functions in different organs including the brain. Importantly, D-amino acids have been detected in several neurological disorders such as schizophrenia, amyotrophic lateral sclerosis, and age-related disorders, reflecting the disease conditions. Relationships between D-amino acids and neurophysiology may involve the significant contribution of D-Serine or D-Aspartate to the synaptic function, including neurotransmission and synaptic plasticity. Gut-microbiota could play important roles in the brain-function, since bacteria in the gut provide a significant contribution to the host pool of D-amino acids. In addition, the alteration of the composition of the gut microbiota might lead to schizophrenia. Furthermore, D-amino acids are known as a physiologically active substance, constituting useful biomarkers of several brain disorders including schizophrenia. In this review, we wish to provide an outline of the roles of D-amino acids in brain health and neuropsychiatric disorders with a focus on schizophrenia, which may shed light on some of the superior diagnoses and/or treatments of schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883943PMC
http://dx.doi.org/10.3390/diseases10010009DOI Listing

Publication Analysis

Top Keywords

d-amino acids
28
schizophrenia d-amino
8
d-amino
7
schizophrenia
6
acids
6
acids biomarker
4
biomarker schizophrenia
4
acids play
4
play key
4
key roles
4

Similar Publications

Synthetic Strategies and Biological Activities of Teixobactin and its Analogs: A Review.

Curr Top Med Chem

January 2025

Department of Chemistry, REVA University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore-560064, Karnataka, India.

Antibiotics are a revolutionary discovery in modern medicine, enabling the successful treatment of bacterial infections that were once untreatable and deadly. Teixobactin, a "head-toside- chain" cyclodepsipeptide, shows great promise as a lead compound for developing new antibiotics to deal with multi-drug-resistant bacterial infections. The unique pharmacological profile and intriguing structural characteristics of teixobactin, including its unusual amino acid residues (three D-amino acids and L-allo-enduracididine), have drawn the attention of multiple research groups seeking to create new antibiotics with innovative mechanisms.

View Article and Find Full Text PDF

The first monomeric pyridoxal-5'-phosphate (PLP)-dependent transaminase from a marine, aromatic-compound-degrading, sulfate-reducing bacterium Tol2, has been studied using structural, kinetic, and spectral methods. The monomeric organization of the transaminase was confirmed by both gel filtration and crystallography. The PLP-dependent transaminase is of the fold type IV and deaminates D-alanine and ()-phenylethylamine in half-reactions.

View Article and Find Full Text PDF

Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Inflammatory Bowel Disease (IBD), encompassing Ulcerative Colitis (UC) and Crohn's Disease (CD), stems from a multifaceted interaction of hereditary, immunological, ecological, and microbial elements. Current treatments have limitations, necessitating new therapeutic approaches.

Aim Of The Study: This study investigates the safeguarding impacts and fundamental processes of extracts of Gleditsia sinensis Lam.

View Article and Find Full Text PDF

The relationship between D-AA metabolic enzymes and cancer development remains unclear. We aimed to investigate this relationship using mice deficient in D-AA-related metabolic enzymes. We examined mice lacking these enzymes for approximately 900 days and the effects of altered D-AA metabolism on cancer development based on lifespan, pathological findings, and gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!