Background: Computed tomography pulmonary angiography (CTPA) is frequently used in the emergency department (ED) for the diagnosis of pulmonary embolism (PE), while posing risk for contrast-induced nephropathy and radiation-induced malignancy.

Objective: We aimed to create an automated process to calculate the Wells score for pulmonary embolism for patients in the ED, which could potentially reduce unnecessary CTPA testing.

Methods: We designed an automated process using electronic health records data elements, including using a combinatorial keyword search method to query free-text fields, and calculated automated Wells scores for a sample of all adult ED encounters that resulted in a CTPA study for PE at 2 tertiary care hospitals in New York, over a 2-month period. To validate the automated process, the scores were compared to those derived from a 2-clinician chart review.

Results: A total of 202 ED encounters resulted in a completed CTPA to form the retrospective study cohort. Patients classified as "PE likely" by the automated process (126/202, 62%) had a PE prevalence of 15.9%, whereas those classified as "PE unlikely" (76/202, 38%; Wells score >4) had a PE prevalence of 7.9%. With respect to classification of the patient as "PE likely," the automated process achieved an accuracy of 92.1% when compared with the chart review, with sensitivity, specificity, positive predictive value, and negative predictive value of 93%, 90.5%, 94.4%, and 88.2%, respectively.

Conclusions: This was a successful development and validation of an automated process using electronic health records data elements, including free-text fields, to classify risk for PE in ED visits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922138PMC
http://dx.doi.org/10.2196/32230DOI Listing

Publication Analysis

Top Keywords

automated process
24
pulmonary embolism
12
automated
8
wells score
8
process electronic
8
electronic health
8
health records
8
records data
8
data elements
8
elements including
8

Similar Publications

Nextflow4MS-DIAL: A Reproducible Nextflow-Based Workflow for Liquid Chromatography-Mass Spectrometry Metabolomics Data Processing.

J Am Soc Mass Spectrom

January 2025

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida 32611, United States.

Reproducibility in untargeted metabolomics data processing remains a significant challenge due to software limitations and the complex series of steps required. To address these issues, we developed Nextflow4MS-DIAL, a reproducible workflow for liquid chromatography-mass spectrometry (LC-MS) metabolomics data processing, validated with publicly available data from MetaboLights (MTBLS733). Nextflow4MS-DIAL automates LC-MS data processing to minimize human errors from manual data handling.

View Article and Find Full Text PDF

Purpose: During endovascular revascularization interventions for peripheral arterial disease, the standard modality of X-ray fluoroscopy (XRF) used for image guidance is limited in visualizing distal segments of infrapopliteal vessels. To enhance visualization of arteries, an image registration technique was developed to align pre-acquired computed tomography (CT) angiography images and to create fusion images highlighting arteries of interest.

Methods: X-ray image metadata capturing the position of the X-ray gantry initializes a multiscale iterative optimization process, which uses a local-variance masked normalized cross-correlation loss to rigidly align a digitally reconstructed radiograph (DRR) of the CT dataset with the target X-ray, using the edges of the fibula and tibia as the basis for alignment.

View Article and Find Full Text PDF

MPIC: Exploring alternative approach to standard convolution in deep neural networks.

Neural Netw

December 2024

Institute of Automation, Chinese Academy of Sciences, MAIS, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 101408, China.

In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).

View Article and Find Full Text PDF

Automated design prediction for definitive obturator prostheses: A case-based reasoning study.

J Prosthodont

January 2025

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.

Purpose: This study aims to evaluate the effectiveness of a case-based reasoning (CBR) system in predicting the design of definitive obturator prostheses for maxillectomy patients.

Materials And Methods: Data from 209 maxillectomy cases, including extraoral images of obturator prostheses and occlusal images of maxillectomy defects, were collected from Institute of Science Tokyo Hospital. These cases were organized into a structured database using Python's pandas library.

View Article and Find Full Text PDF

Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!