Circular RNA is related to the tumorigenesis of various cancers. Circular RNA hsa_circ_0020123 (circ_0020123) has been uncovered to promote non-small cell lung cancer (NSCLC) progression. However, the regulatory mechanism of circ_0020123 in NSCLC is unclear. The quantitative real-time polymerase chain reaction was employed to detect the levels of circ_0020123, microRNA (miR)-193a-3p, and IRF4 interferon regulatory factor 4 (IRF4) in NSCLC tissues and cells. Loss-of-function experiments were performed to analyze the impacts of circ_0020123 silencing on NSCLC cell malignancy, autophagy, and glycolysis. Protein levels were detected using western blotting. The regulatory mechanism of circ_0020123 was analyzed by bioinformatics analysis and validated by the dual-luciferase reporter, RNA immunoprecipitation assay, and RNA pull-down assay. Xenograft assay was performed to verify the biological function of circ_0020123. We observed an overt elevation in circ_0020123 expression in NSCLC samples and cells, and NSCLC patients with high circ_0020123 expression had a poor prognosis. Circ_0020123 knockdown constrained xenograft tumor growth in vivo and curbed cell proliferation, migration, and glycolysis, and accelerated cell apoptosis and autophagy in NSCLC cells in vitro. Circ_0020123 could absorb miR-193a-3p to regulate IRF4 expression. miR-193a-3p silencing overturned circ_0020123 knockdown-mediated impacts on NSCLC cell malignancy, autophagy, and glycolysis. And IRF4 overexpression reversed miR-193a-3p mimic-mediated effects on NSCLC cell malignancy, autophagy, and glycolysis. Circ_0020123 promoted glycolysis and tumor growth by upregulating IRF4 through sequestering miR-193a-3p in NSCLC, offering a novel mechanism by which circ_0020123 is responsible for the malignancy, autophagy, and glycolysis of NSCLC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/neo_2022_211013N1449 | DOI Listing |
Pathogens
January 2025
Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
is the specific pathogen for "milky disease" in the Chinese mitten crab (), accounting for huge losses to the industry. And yet, there is no precise study describing the pathogenesis of , largely hindering the development of novel control methods against its causing diseases. Here, we compared the transcriptomes of cells collected from a control group (cultured without hemocytes) and a treatment group (cultured with hemocytes), using RNA sequencing.
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. Electronic address:
Sexual dimorphism is well-documented in aquaculture, particularly regarding growth differences, wherein one sex often grows faster than the other. However, despite the phenomenon being so widely documented, its underlying molecular mechanisms remain poorly understood. As an important digestive and immune organ, the gut plays key roles in the regulation of fish growth.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
Objective: Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion.
Methods: Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control.
Scientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!