Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed. This work studies the intersystem Coulomb interactions in IL-functionalized InSe field-effect transistors by displacement current measurements. We uncover a strong self-gating effect that yields a 50-fold enhancement in interfacial capacitance, reaching 550 nF/cm in the maximum. Moreover, we reveal the IL-phase-dependent transport characteristics, including the channel current, carrier mobility, and density, substantiating the self-gating at the InSe/IL interface. The dominance of self-gating in the rubber phase is attributed to the correlation between the intra- and intersystem Coulomb interactions, further confirmed by Raman spectroscopy. This study provides insights into the capacitive coupling at the InSe/IL interface, paving the way to developing liquid/2D material hybrid devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c04522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!