Electronic Modulation of Pt Nanoparticles on NiN-MoC by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution.

J Phys Chem Lett

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.

Published: March 2022

AI Article Synopsis

Article Abstract

Electrochemical energy conversion and storage through hydrogen has revolutionized sustainable energy systems using fuel cells and electrolyzers. Regrettably, the sluggish alkaline hydrogen oxidation reaction (HOR) hampers advances in fuel cells. Herein, we report a Pt/NiN-MoC bifunctional electrocatalyst toward HOR and hydrogen evolution reaction (HER). The Pt/NiN-MoC exhibits remarkable HOR/HER performance in alkaline media. The mass activity at 50 mV and exchange current density of HOR are 5.1 and 1.5 times that of commercial Pt/C, respectively. Moreover, it possesses an impressive HER activity with an overpotential of 11 mV @ 10 mA cm, which is lower than that of Pt/C and most reported electrocatalysts under the same conditions. Density functional theory (DFT) calculations combined with experimental results reveal that Pt/NiN-MoC not only possesses an optimal balance between hydrogen binding energy (HBE) and OH adsorption but also facilitates water adsorption and dissociation on the catalyst surface, which contribute to the excellent HOR/HER performance. Thus, this work may guide bifunctional HOR/HER catalyst design in the conversion and transport of energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c00021DOI Listing

Publication Analysis

Top Keywords

hydrogen oxidation
8
fuel cells
8
hor/her performance
8
hydrogen
5
electronic modulation
4
modulation nanoparticles
4
nanoparticles nin-moc
4
nin-moc support-induced
4
support-induced strategy
4
strategy accelerating
4

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Unlabelled: Honey is abundant in bioactive compounds, which demonstrate considerable therapeutic effects, particularly on oxidative stress and inflammation.

Objectives: This work sought to evaluate the antioxidant mechanisms of Manuka honey (MH) and Ohia Lehua honey (OLH), correlating them with phytochemical analyses in a rat model of experimentally induced inflammation.

Methods: The identification of polyphenolic compounds in the extracts was carried out using HPLC-ESI MS.

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!