Design of a flexible surface/interlayer for packaging.

Soft Matter

Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Published: March 2022

Impact resistance and thermal insulation are important factors to be considered in the fields of encapsulation and drug transportation. In this study, a classic circular sleeve structure is designed by integrating the multi-level surface topography of the sleeve and a hollow sandwich in the wall, which effectively improves the energy absorption efficiency and thermal insulation effect. With the increase of the levels of surface structure, the stiffness of the whole structure and the stress on the topmost structure decreases, which is conducive to protecting the structure. In addition, the thermal conduction efficiency can be limited and the heat preservation ability would be improved as the reduction of the contacting area of packages with internal objects is attributed to such specific topography. Moreover, the synergistic effect of the hollow sandwich further enhances the advantages of mechanics and heat insulation. Based on the findings of this study, this novel design has potential applications in fields such as thermal insulation, packaging, and pharmaceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm01799cDOI Listing

Publication Analysis

Top Keywords

thermal insulation
12
hollow sandwich
8
structure
5
design flexible
4
flexible surface/interlayer
4
surface/interlayer packaging
4
packaging impact
4
impact resistance
4
thermal
4
resistance thermal
4

Similar Publications

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.

View Article and Find Full Text PDF

Acoustic, Mechanical, and Thermal Characterization of Polyvinyl Acetate (PVA)-Based Wood Composites Reinforced with Beech and Oak Wood Fibers.

Polymers (Basel)

January 2025

Research Laboratory for Sustainable Development and Health, Department of Applied Physics, Faculty of Sciences and Technics, Cadi Ayyad University, Marrakesh 40000, Morocco.

Considering the growing need for developing ecological materials, this study investigates the acoustic, mechanical, and thermal properties of wood composites reinforced with beech or oak wood fibres. Scanning electron microscopy (SEM) revealed a complex network of interconnected pores within the composite materials, with varying pore sizes contributing to the material's overall properties. Acoustic characterization was conducted using a two-microphone impedance tube.

View Article and Find Full Text PDF

Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing.

View Article and Find Full Text PDF

Comparative, Cost and Multi-Criteria Analyses of Traditional Binders in the Composition of Hemp-Based Finishing Products.

Materials (Basel)

January 2025

Department of Civil Engineering and Management, Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania.

The objective of this paper is to analyze the characteristics of twelve compositions based on hemp shiv and four traditional binders used in the construction industry: cement, plaster, hydrated lime and clay, with the aim of using the resulting materials as final finishing products applicable to the raw area of walls, slabs and other construction elements for walls. Comparative, cost and multi-criteria analyses were carried out on the proposed compositions. The comparative analysis focused on acoustic, thermal, mechanical and fire characteristics, followed by a cost analysis and ending with multi-criteria analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!