The ability to determine the binding affinity of lipids to proteins is an essential part of understanding protein-lipid interactions in membrane trafficking, signal transduction and cytoskeletal remodeling. Classic tools for measuring such interactions include surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). While powerful tools, these approaches have setbacks. ITC requires large amounts of purified protein as well as lipids, which can be costly and difficult to produce. Furthermore, ITC as well as SPR are very time consuming, which could add significantly to the cost of performing these experiments. One way to bypass these restrictions is to use the relatively new technique of microscale thermophoresis (MST). MST is fast and cost effective using small amounts of sample to obtain a saturation curve for a given binding event. There currently are two types of MST systems available. One type of MST requires labeling with a fluorophore in the blue or red spectrum. The second system relies on the intrinsic fluorescence of aromatic amino acids in the UV range. Both systems detect the movement of molecules in response to localized induction of heat from an infrared laser. Each approach has its advantages and disadvantages. Label-free MST can use untagged native proteins; however, many analytes, including pharmaceuticals, fluoresce in the UV range, which can interfere with determination of accurate KD values. In comparison, labeled MST allows for a greater diversity of measurable pairwise interactions utilizing fluorescently labeled probes attached to ligands with measurable absorbances in the visible range as opposed to UV, limiting the potential for interfering signals from analytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/60607 | DOI Listing |
Commun Biol
January 2025
Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.
Fortilin, a 172-amino acid polypeptide, is a multifunctional protein that interacts with various protein molecules to regulate their functions. Although fortilin has been shown to interact with cytoskeleton proteins such as tubulin and actin, its interactions with the components of adherens junctions remained unknown. Using co-immunoprecipitation western blot analyses, the proximity ligation assay, microscale thermophoresis, and biolayer interferometry, we here show that fortilin specifically interacts with CTNNA3 (α-T-catenin), but not with CTNNA1, CTNNA2, or CTNNB.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Plant Protection, Southwest University, Chongqing 400715, China.
Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China. Electronic address:
Background: Oral squamous cell carcinoma (OSCC) is one of the most common malignancies. However, there is no effective treatment for OSCC.
Purpose: This study aimed to identify a natural compound with significant efficacy against OSCC and elucidate its primary mechanism of action.
Appl Environ Microbiol
December 2024
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, Tianjin, China.
Unlabelled: As toxic pollutants, -alkanes are pervasively distributed in most environmental matrices. Although the alkane monooxygenase AlmA plays a critical role in the metabolic pathway of solid long-chain -alkanes (≥C) that are extremely difficult to degrade, the mechanism regulating this process remains unclear. Here, we characterized the function of AlmA in RAG-1, which was mainly involved in the degradation of long-chain -alkanes (C-C), among which, -C induced the promoter activity most.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Institute of Rocket Force Medicine, Third Military Medical University (Army Medical University), 400038, Chongqing, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China. Electronic address:
Spaceflight-induced osteoporosis (SFOP) is a detrimental healthcare consequence during spaceflight. Weightlessness and ionizing radiation were main environmental factors that contribute to SFOP, especially in the manned deep space voyages. However, currently there is scarce effective method to treat SFOP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!