Thermally activated delayed fluorophores (TADF) with donor-acceptor (D-A) structures always face strong conjugation between donor and acceptor segments, rendering delocalized new molecular orbitals that go against blue emission. Developing TADF emitters with blue colors, high efficiencies, and long lifetimes simultaneously is therefore challenging. Here, a D-void-A structure with D and A moieties connected at the void-position where the frontier orbital from donor and acceptor cannot be distributed, resulting in nonoverlap of the orbitals is proposed. A proof-of-the-concept TADF emitter with 3,6-diphenyl-9H-carbazole (D) connected at the 3'3-positions of 9H-xanthen-9-one (A), the void carbon-atom with no distribution of the highest occupied molecular orbital (HOMO) of A-segment, realizes more efficient and blue-shifted emission compared with the contrast D-A isomers. The deeper HOMO-2 of A is found to participate into conjugation rather than HOMO, providing a wider-energy-gap. The corresponding blue device exhibits a y color coordinate (CIE ) of 0.252 and a maximum external quantum efficiency of 27.5%. The stability of this compound is further evaluated as a sensitizer for a multiple resonance fluorophore, realizing a long lifetime of ≈650 h at an initial luminance of 100 cd m with a CIE of 0.195 and a narrowband emission with a full-width-at-half-maxima of 21 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036013PMC
http://dx.doi.org/10.1002/advs.202106018DOI Listing

Publication Analysis

Top Keywords

thermally activated
8
activated delayed
8
donor acceptor
8
highly efficient
4
efficient stable
4
blue
4
stable blue
4
blue organic
4
organic light-emitting
4
light-emitting diodes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!