The p70 ribosomal S6 kinases (p70 ribosomal S6 kinase 1 and p70 ribosomal S6 kinase 2) are downstream targets of the mechanistic target of rapamycin signalling pathway. p70 ribosomal S6 kinase 1 specifically has demonstrated functions in regulating cell size in and in insulin-sensitive cell populations in mammals. Prior studies demonstrated that the mechanistic target of the rapamycin pathway promotes oligodendrocyte differentiation and developmental myelination; however, how the immediate downstream targets of mechanistic target of rapamycin regulate these processes has not been elucidated. Here, we tested the hypothesis that p70 ribosomal S6 kinase 1 regulates oligodendrocyte differentiation during developmental myelination and remyelination processes in the CNS. We demonstrate that p70 ribosomal S6 kinase activity peaks in oligodendrocyte lineage cells at the time when they transition to myelinating oligodendrocytes during developmental myelination in the mouse spinal cord. We further show p70 ribosomal S6 kinase activity in differentiating oligodendrocytes in acute demyelinating lesions induced by lysophosphatidylcholine injection or by experimental autoimmune encephalomyelitis in mice. In demyelinated lesions, the expression of the p70 ribosomal S6 kinase target, phosphorylated S6 ribosomal protein, was transient and highest in maturing oligodendrocytes. Interestingly, we also identified p70 ribosomal S6 kinase activity in oligodendrocyte lineage cells in active multiple sclerosis lesions. Consistent with its predicted function in promoting oligodendrocyte differentiation, we demonstrate that specifically inhibiting p70 ribosomal S6 kinase 1 in cultured oligodendrocyte precursor cells significantly impairs cell lineage progression and expression of myelin basic protein. Finally, we used zebrafish to show that inhibiting p70 ribosomal S6 kinase 1 function in oligodendroglial cells reduces their differentiation and the number of myelin internodes produced. These data reveal an essential function of p70 ribosomal S6 kinase 1 in promoting oligodendrocyte differentiation during development and remyelination across multiple species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8864467PMC
http://dx.doi.org/10.1093/braincomms/fcac025DOI Listing

Publication Analysis

Top Keywords

p70 ribosomal
48
ribosomal kinase
44
oligodendrocyte differentiation
20
ribosomal
13
p70
12
mechanistic target
12
target rapamycin
12
developmental myelination
12
kinase activity
12
kinase
11

Similar Publications

In the current study, we investigated the effects and action mechanism of integrin a3b1 in modulating non-small cell lung cancer (NSCLC) growth and progression. Reduced expression of integrin a3 by RNA silencing in p53 wild-type A549 NSCLC cells inhibits cell migration and invasion, compared with those in control cells. These anti-migratory and anti-invasive properties in integrin a3-silenced cells were associated with epithelial cadherin (E-cadherin) distribution at cell-cell contacts, and these effects require the activation of p70 S6 kinase (p70S6K) as evidenced by treatment with rapamycin.

View Article and Find Full Text PDF

Nutrient control of growth and metabolism through mTORC1 regulation of mRNA splicing.

Mol Cell

December 2024

Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action.

View Article and Find Full Text PDF

Prenatal alcohol exposure is a leading cause of permanent neurodevelopmental disability and can feature distinctive craniofacial deficits that partly originate from the apoptotic deletion of craniofacial progenitors, a stem cell lineage called the neural crest (NC). We recently demonstrated that alcohol causes nucleolar stress in NC through its suppression of ribosome biogenesis (RBG) and this suppression is causative in their p53/MDM2-mediated apoptosis. Here, we show that this nucleolar stress originates from alcohol's activation of AMPK, which suppresses TORC1 and the p70/S6K-mediated stimulation of RBG.

View Article and Find Full Text PDF

Far-infrared (FIR) ray, an invisible electromagnetic radiation with a wavelength of 3‒1000 μm, elicits various biological effects. Excessive proliferation of human upper airway epithelial cells (HUAEpCs) contributes to the development and exacerbation of nasal narrowing diseases, including nasal polyposis and chronic rhinosinusitis with nasal polyps (CRSwNP). Here, we investigated the molecular mechanisms through which FIR irradiation inhibits the proliferation of HUAEpCs.

View Article and Find Full Text PDF

Oxidative stress-mediated retinal pigment epithelial (RPE) cell damage is associated with age-related macular degeneration (AMD). ST266 is the biological secretome produced by a novel population of amnion-derived multipotent progenitor cells. Herein, we investigated the effect of ST266 on RPE cell injury induced by hydroquinone (HQ), a cigarette smoke related oxidant, hydrogen peroxide (HO) and all-trans retinal (atRal), a pro-oxidant component of the retinoid cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!