Progesterone monitoring is an essential component of in vitro fertilization treatments and reproductive management of dairy cows. Gold-standard biosensors for progesterone monitoring rely on antibodies, which are expensive and difficult to procure. We have developed an alternative transcription factor-based sensor that is superior to conventional progesterone biosensors. Here, we incorporate this transcription factor-based progesterone sensor into an affordable, portable paperfluidic format to facilitate widespread implementation of progesterone monitoring at the point of care. Oligonucleotides labeled with a fluorescent dye are immobilized onto nitrocellulose via a biotin-streptavidin interaction. In the absence of progesterone, these oligonucleotides form a complex with a transcription factor that is fluorescently labeled with tdTomato. In the presence of progesterone, the fluorescent transcription factor unbinds from the immobilized DNA, resulting in a decrease in tdTomato fluorescence. The limit of detection of our system is 27 nm, which is a clinically relevant level of progesterone. We demonstrate that transcription factor-based sensors can be incorporated into paperfluidic devices, thereby making them accessible to a broader population due to the portability and affordability of paper-based devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8867790 | PMC |
http://dx.doi.org/10.1021/acsomega.1c05737 | DOI Listing |
Sci Rep
December 2024
Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!