A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of heavy metals on bacterial community surrounding Bijiashan mining area located in northwest China. | LitMetric

Effects of heavy metals on bacterial community surrounding Bijiashan mining area located in northwest China.

Open Life Sci

Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou 730070, China.

Published: February 2022

Heavy metal (HM) pollution is a severe and common environmental problem in mining area soil. It is imperative to understand the micro ecological characteristics of mining area soil for HM contaminated soil remediation. This study described the effects of HM pollution level and soil physical and chemical parameters on microbial diversity. In this study, high-throughput sequencing technology was used to study the effects of HM pollution on the diversity and composition of the soil microbial community. The soil groups were barren, exhibiting alkaline pH, low total nitrogen (TN), and total potassium (TK) according to soil fertility standard. Compared with the control group, there was severe multiple HM pollution in the other five groups, including lead (Pb), cadmium (Cd), zinc (Zn), and copper (Cu). The dominant phyla accounting for more than 1% of the overall community in all soil groups were Proteobacteria (34.432 ± 7.478%), Actinobacteria (22.947 ± 4.297%), Acidobacteria (10.47 ± 2.439%), Chloroflexi (7.89 ± 2.980%), Planctomycetota (5.993 ± 1.558%), Bacteroidota (4.275 ± 1.980%), Cyanobacteria (3.478 ± 2.196%), Myxococcus (2.888 ± 0.822%), Gemmatimonadota (2.448 ± 0.447%), Firmicutes (1.193 ± 0.634%), Patescibacteria (0.435 ± 0.813%), and Nitrospirota (0.612 ± 0.468%). Proteobacteria and Actinobacteria were predominant at the phylum level, which showed a certain tolerance to HMs. In addition, redundancy analysis (RDA) results showed that Pb, Cu, Zn, and Cd were strongly correlated with each other ( < 0.01). Other nutrient elements (except for TK) were significantly positively correlated with each other. Cu and nutrient element TK had an important impact on bacterial community structure. Therefore, bacteria with the function of HM tolerance and bioremediation in extreme environments should be researched, which provides a foundation for future ecological remediation of contaminated soil by using microbial remediation technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822311PMC
http://dx.doi.org/10.1515/biol-2022-0008DOI Listing

Publication Analysis

Top Keywords

mining area
12
soil
9
bacterial community
8
area soil
8
contaminated soil
8
effects pollution
8
soil microbial
8
community soil
8
soil groups
8
effects heavy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!