With the manipulator performs fixed-point tasks, it becomes adversely affected by external disturbances, parameter variations, and random noise. Therefore, it is essential to improve the robust and accuracy of the controller. In this article, a self-tuning particle swarm optimization (PSO) fuzzy PID positioning controller is designed based on fuzzy PID control. The quantization and scaling factors in the fuzzy PID algorithm are optimized by PSO in order to achieve high robustness and high accuracy of the manipulator. First of all, a mathematical model of the manipulator is developed, and the manipulator positioning controller is designed. A PD control strategy with compensation for gravity is used for the positioning control system. Then, the PID controller parameters dynamically are minute-tuned by the fuzzy controller 1. Through a closed-loop control loop to adjust the magnitude of the quantization factors-proportionality factors online. Correction values are outputted by the modified fuzzy controller 2. A quantization factor-proportion factor online self-tuning strategy is achieved to find the optimal parameters for the controller. Finally, the control performance of the improved controller is verified by the simulation environment. The results show that the transient response speed, tracking accuracy, and follower characteristics of the system are significantly improved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873531 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.817723 | DOI Listing |
Sensors (Basel)
December 2024
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
This paper focuses on the design of vehicle trajectories and their control systems. A method based on quintic polynomials is utilized to develop trajectories for intelligent vehicles, ensuring the smooth continuity of the trajectory and related state curves under varying conditions. The construction of lateral and longitudinal controllers is discussed, which includes a tracking error model derived from the two-degree-of-freedom dynamic model of a two-wheeled vehicle and the application of the Frenet coordinate system transformation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Mechanical and Electronic Engineering, Northeastern University, Shenyang 110819, China.
In this study, a fuzzy adaptive impedance control method integrating the backstepping control for the PAM elbow exoskeleton was developed to facilitate robot-assisted rehabilitation tasks. The proposed method uses fuzzy logic to adjust impedance parameters, thereby optimizing user adaptability and reducing interactive torque, which are major limitations of traditional impedance control methods. Furthermore, a repetitive learning algorithm and an adaptive control strategy were incorporated to improve the performance of position accuracy, addressing the time-varying uncertainties and nonlinear disturbances inherent in the exoskeleton.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronics Engineering, SR University, Warangal, Telangana, 506371, India.
Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
To tackle the challenges of poor stability during real-time random gait switching and precise trajectory control for hexapod robots under limited stride and steering conditions, a novel real-time replanning gait switching control strategy based on an omnidirectional gait and fuzzy inference is proposed, along with an attitude control method based on the single-neuron adaptive proportional-integral-derivative (PID). To start, a kinematic model of a hexapod robot was developed through the Denavit-Hartenberg (D-H) kinematics analysis, linking joint movement parameters to the end foot's endpoint pose, which formed the foundation for designing various gaits, including omnidirectional and compound gaits. Incorporating an omnidirectional gait could effectively resolve the challenge of precise trajectory control for the hexapod robot under limited stride and steering conditions.
View Article and Find Full Text PDFHeliyon
October 2024
School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan Hebei, 056038, China.
The hydraulic support pushing mechanism is the primary equipment utilized in coal mine backfill operations, playing a crucial role in enhancing filling efficiency, ensuring a stable filling body, and managing gob safety. This paper focuses on analyzing the dynamic model and the interrelationship of the hydraulic cylinder, which serves as the power source for the pushing mechanism. To address the intricate coupling effects arising from the hydraulic cylinders and the displacement-force induced by the shared pump, this study employs feedforward compensation for decoupling analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!