Accelerating the oxygen reduction kinetics of solid oxide fuel cell (SOFC) cathodes is crucial to improve their efficiency and thus to provide the basis for an economically feasible application of intermediate temperature SOFCs. In this work, minor amounts of Pt were doped into lanthanum strontium ferrite (LSF) thin film electrodes to modulate the material's oxygen exchange performance. Surprisingly, Pt was found to be incorporated on the B-site of the perovskite electrode as non metallic Pt. The polarization resistance of LSF thin film electrodes with and without additional Pt surface doping was compared directly after film growth employing electrochemical impedance spectroscopy inside a PLD chamber (-PLD). This technique enables observation of the polarization resistance of pristine electrodes unaltered by degradation or any external contamination of the electrode surface. Moreover, growth of multi-layers of materials with different compositions on the very same single crystalline electrolyte substrate combined with impedance measurements allow excellent comparability of different materials. Even a 5 nm layer of Pt doped LSF (1.5 at% Pt), a Pt loading of 80 ng cm, improved the polarization resistance by a factor of about 2.5. In addition, (O) and temperature dependent impedance measurements on both pure and Pt doped LSF were performed and obtained similar activation energies and (O) dependence of the polarization resistance, which allow us to make far reaching mechanistic conclusions indicating that Pt introduces additional active sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823903PMC
http://dx.doi.org/10.1039/d1ta08634kDOI Listing

Publication Analysis

Top Keywords

polarization resistance
16
impedance measurements
12
surface doping
8
lanthanum strontium
8
strontium ferrite
8
lsf thin
8
thin film
8
film electrodes
8
doped lsf
8
performance modulation
4

Similar Publications

Dual efficacy of tocilizumab in managing PD-1 inhibitors-induced myocardial inflammatory injury and suppressing tumor growth with PD-1 inhibitors: a preclinical study.

Cancer Immunol Immunother

January 2025

Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The combined use of tocilizumab (TCZ) and immune checkpoint inhibitors (ICIs) in cancer treatment is gaining attention, but preclinical studies are lacking. Our study aims to investigate the synergistic anti-tumor effect of TCZ combined with ICIs and its role in treating immune-related adverse events (irAEs). The clinical significance of high interleukin-6 (IL-6) expression in tumor patients was analyzed from the Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

IDO1 inhibitor enhances the effectiveness of PD-1 blockade in microsatellite stable colorectal cancer by promoting macrophage pro-inflammatory phenotype polarization.

Cancer Immunol Immunother

January 2025

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.

Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.

View Article and Find Full Text PDF

Gastric cancer-derived exosomal let-7 g-5p mediated by SERPINE1 promotes macrophage M2 polarization and gastric cancer progression.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.

Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.

View Article and Find Full Text PDF

Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.

View Article and Find Full Text PDF

The pervasive model for a solvated, ion-filled nanopore is often a resistor in parallel with a capacitor. For conical nanopore geometries, here we propose the inclusion of a Warburg-like element, which is necessary to explain otherwise anomalous observations such as negative capacitance and low-pass filtering of translocation events (we term this phenomenon as Warburg filtering). The negative capacitance observed here has long equilibration times and memory (that is, mem-capacitance) at negative voltages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!