Because supramolecular polymerization of emissive π-conjugated molecules depends strongly on π-π stacking interaction, the formation of well-defined one-dimensional nanostructures often results in a decrease or only a small increase of emission efficiency. This is also true for our barbiturate-based supramolecular polymers wherein hydrogen-bonded rosettes of barbiturates stack quasi-one-dimensionally through π-π stacking interaction. Herein we report supramolecular polymerization-induced emission of two regioisomeric 2,3-diphenylthiophene derivatives functionalized with barbituric acid and tri(dodecyloxy)benzyl wedge units. In CHCl, both compounds are molecularly dissolved and accordingly poorly emissive due to a torsion-induced non-radiative decay. In methylcyclohexane-rich conditions, these barbiturates self-assemble to form crystalline nanofibers and exhibit strongly enhanced emission through supramolecular polymerization driven by hydrogen-bonding. Our structural analysis suggests that the barbiturates form a tape-like hydrogen-bonding motif, which is rationalized by considering that the twisted geometries of 2,3-diphenylthiophene cores prevend the competing rosettes from stacking into columnar supramolecular polymers. We also found that a small difference in the molecular polarity originating from the substitutional position of the thiophene core influences interchain association of the supramolecular polymers, affording different luminescent soft materials, gel and nanosheet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809409 | PMC |
http://dx.doi.org/10.1039/d1sc06246h | DOI Listing |
ACS Macro Lett
December 2024
School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China.
The construction of single-component, white-light-emitting, conjugated polymers always utilizes fluorescence resonance energy transfer (FRET) for efficient emission. However, the main challenges in developing such materials primarily come from the effects of aggregation states during solution processing and the precise structural control required for the synthesis of compounds. Both aspects can affect the FRET between different lumophores in white-light-emitting materials.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy. Electronic address:
The polyallylamine hydrochloride (PAH) polymer is here functionalized with branched and biocompatible polysaccharide dextran (DEX) molecules. Covalent conjugation of DEX to PAH has been achieved through a straightforward reductive amination approach, allowing for a controlled number of DEX chains per PAH polymer (PAH:DEX, n = 0.1, 0.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
Triple-negative breast cancer (TNBC) is recognized as a particularly aggressive subtype of breast cancer that is devoid of effective therapeutic targets. Immune checkpoint inhibitors (ICIs) have demonstrated promising results in TNBC treatment. Nonetheless, most patients either develop resistance to ICIs or fail to respond to them initially.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200041 Shanghai, China. Electronic address:
Biological lubricating materials play a crucial role in normal human activities due to their extremely low coefficients of friction (COFs). However, synthetic friction materials typically exhibit higher friction coefficients and wear rates compared to natural lubricating materials. To address this issue, we propose a novel lubrication strategy: reducing the friction coefficient of synthetic lubricating materials through supramolecular dynamic exchange.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain.
Supramolecular self-assembly is an advanced approach for constructing ordered nanoscale architectures with broad applications. While the principles of supramolecular polymerization have been thoroughly explored in artificial small molecules, polymer transformations remain barely explored, likely due to the lack of suitable reference models presenting well-defined and reversible transitions between aggregates. In this study, we introduce a series of bisdendronized squaramides (SQs) 1-3, showcasing complex self-assembly behaviours involving four distinct aggregates, three different interaction patterns, and various thermodynamically controlled polymorph transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!