MicroRNAs (miRNAs or miRs) play important roles in cardiovascular disease. miR-21-5p is known to be involved in the regulation of cardiomyocyte injury under high glucose and high fat (HG-HF) conditions, but its mechanism of action remains unclear. In the present study, a cardiomyocyte cell line, H9c2, was treated with 33 mM glucose and 250 µM sodium palmitate for 24, 48, and 72 h to produce HG-HF injury. After treatment, miR-21-5p expression was detected by reverse transcription-quantitative PCR. A miR-21-5p mimic was then constructed and transfected into the cells and the potential molecular mechanism was investigated using Cell Counting Kit-8, TUNEL, flow cytometry and western blot assays. Expression of miR-21-5p was significantly downregulated by HG-HF treatment of H9c2 cells for 24, 48, and 72 h. In subsequent experiments, cells were treated for an intermediate period (48 h). Compared with the control group, HG-HF treatment significantly inhibited H9c2 proliferation and promoted apoptosis, while these effects were significantly reduced in the miR-21-5p mimic. Compared with the control group, HG-HF treatment significantly increased reactive oxygen species, while miR-21-5p mimic significantly reduced this effect. Compared with the control group, HG-HF treatment significantly increased the expression of the pro-apoptotic proteins Bax and phosphorylated (p)-Akt and decreased the expression of the anti-apoptotic proteins Bcl-2, p-PTEN, and p-FOXO3a, while overexpression of miR-21-5p significantly reduced these effects. The results revealed that miR-21-5p inhibited apoptosis and oxidative stress in H9c2 cells induced by HG-HF, likely through the PTEN/Akt/FOXO3a signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815051PMC
http://dx.doi.org/10.3892/etm.2022.11154DOI Listing

Publication Analysis

Top Keywords

hg-hf treatment
16
mir-21-5p mimic
12
compared control
12
control group
12
group hg-hf
12
pten/akt/foxo3a signaling
8
signaling pathway
8
cardiomyocyte injury
8
mir-21-5p
8
h9c2 cells
8

Similar Publications

Article Synopsis
  • The study aimed to explore how Dapagliflozin (Da) affects human umbilical vein endothelial cells (HUVECs) that suffer from high glucose and high fat conditions.
  • Methods included various cell treatments and assays to evaluate the function and survival of HUVECs, as well as the expression of SGLT-2.
  • Results indicated that Dapagliflozin improved cell proliferation, migration, and survival in HUVECs impaired by high glucose/high fat, suggesting its potential to counteract endothelial dysfunction via SGLT-2 inhibition.
View Article and Find Full Text PDF

Fibroblast growth factor 21 improves diabetic cardiomyopathy by inhibiting ferroptosis via ferritin pathway.

Cardiovasc Diabetol

November 2024

Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.

Background: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 2 diabetes mellitus, and its mechanisms are complex and poorly understood. Despite growing evidence suggesting that ferroptosis plays a significant role in cardiovascular disease, it has been less extensively studied in DCM. Fibroblast growth factor 21 (FGF21), whose mechanism of action is closely related to ferroptosis, is widely utilized in studies focused on the prevention and treatment of glucolipid metabolism-related diseases and cardiovascular diseases.

View Article and Find Full Text PDF

Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a cardiovascular complication with no known cure. In this study, we evaluated the combination of ultrasound-targeted microbubble destruction (UTMD) and cationic microbubbles (CMBs) for cardiac S-adenosyl homocysteine hydrolase (SAHH) gene transfection as potential DCM therapy. Models of high glucose/fat (HG/HF)-induced H9C2 cells and streptozotocin-induced DCM rats were established.

View Article and Find Full Text PDF

DPP-4 Inhibitors Suppress Tau Phosphorylation and Promote Neuron Autophagy through the AMPK/mTOR Pathway to Ameliorate Cognitive Dysfunction in Diabetic Mellitus.

ACS Chem Neurosci

September 2023

Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P. R. China.

Dipeptidyl peptidase-4 (DPP-4) inhibitors have been considered as incretin-based agents that signal through GLP-1R. Our high-throughput RNA sequencing (RNA-seq) and bioinformatics methods indicated that GLP-1R, downregulated in diabetes mellitus (DM), was a potential target of DPP-4 inhibitors, which was further confirmed in DM rats. Thus, this study illuminated the alleviatory mechanism of DPP-4 on cognitive dysfunction in diabetes mellitus (DM), which may be associated with GLP-1R signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!