MicroRNAs (miRNAs or miRs) play important roles in cardiovascular disease. miR-21-5p is known to be involved in the regulation of cardiomyocyte injury under high glucose and high fat (HG-HF) conditions, but its mechanism of action remains unclear. In the present study, a cardiomyocyte cell line, H9c2, was treated with 33 mM glucose and 250 µM sodium palmitate for 24, 48, and 72 h to produce HG-HF injury. After treatment, miR-21-5p expression was detected by reverse transcription-quantitative PCR. A miR-21-5p mimic was then constructed and transfected into the cells and the potential molecular mechanism was investigated using Cell Counting Kit-8, TUNEL, flow cytometry and western blot assays. Expression of miR-21-5p was significantly downregulated by HG-HF treatment of H9c2 cells for 24, 48, and 72 h. In subsequent experiments, cells were treated for an intermediate period (48 h). Compared with the control group, HG-HF treatment significantly inhibited H9c2 proliferation and promoted apoptosis, while these effects were significantly reduced in the miR-21-5p mimic. Compared with the control group, HG-HF treatment significantly increased reactive oxygen species, while miR-21-5p mimic significantly reduced this effect. Compared with the control group, HG-HF treatment significantly increased the expression of the pro-apoptotic proteins Bax and phosphorylated (p)-Akt and decreased the expression of the anti-apoptotic proteins Bcl-2, p-PTEN, and p-FOXO3a, while overexpression of miR-21-5p significantly reduced these effects. The results revealed that miR-21-5p inhibited apoptosis and oxidative stress in H9c2 cells induced by HG-HF, likely through the PTEN/Akt/FOXO3a signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815051 | PMC |
http://dx.doi.org/10.3892/etm.2022.11154 | DOI Listing |
J Diabetes Complications
January 2025
Department of Endocrinology The Second Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, China. Electronic address:
Cardiovasc Diabetol
November 2024
Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
Background: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 2 diabetes mellitus, and its mechanisms are complex and poorly understood. Despite growing evidence suggesting that ferroptosis plays a significant role in cardiovascular disease, it has been less extensively studied in DCM. Fibroblast growth factor 21 (FGF21), whose mechanism of action is closely related to ferroptosis, is widely utilized in studies focused on the prevention and treatment of glucolipid metabolism-related diseases and cardiovascular diseases.
View Article and Find Full Text PDFChem Biol Interact
November 2024
Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:
Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms.
View Article and Find Full Text PDFiScience
February 2024
Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin 150081, P.R. China.
Diabetic cardiomyopathy (DCM) is a cardiovascular complication with no known cure. In this study, we evaluated the combination of ultrasound-targeted microbubble destruction (UTMD) and cationic microbubbles (CMBs) for cardiac S-adenosyl homocysteine hydrolase (SAHH) gene transfection as potential DCM therapy. Models of high glucose/fat (HG/HF)-induced H9C2 cells and streptozotocin-induced DCM rats were established.
View Article and Find Full Text PDFACS Chem Neurosci
September 2023
Department of Anesthesiology and Operative Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, P. R. China.
Dipeptidyl peptidase-4 (DPP-4) inhibitors have been considered as incretin-based agents that signal through GLP-1R. Our high-throughput RNA sequencing (RNA-seq) and bioinformatics methods indicated that GLP-1R, downregulated in diabetes mellitus (DM), was a potential target of DPP-4 inhibitors, which was further confirmed in DM rats. Thus, this study illuminated the alleviatory mechanism of DPP-4 on cognitive dysfunction in diabetes mellitus (DM), which may be associated with GLP-1R signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!