Antibody Self-Assembly Maximizes Cytoplasmic Immunostaining Accuracy of Compact Quantum Dots.

Chem Mater

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Holonyak Micro and Nanotechnology Laboratory, Department of Bioengineering, Carl R. Woese Institute for Genomic Biology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States; Carle Illinois College of Medicine, Urbana, Illinois 61801, United States.

Published: July 2021

Antibody conjugates of quantum dots (QDs) are expected to transform immunofluorescence staining by expanding multiplexed analysis and improving target quantification. Recently, a new generation of small QDs coated with multidentate polymers has improved QD labeling density in diverse biospecimens, but new challenges prevent their routine use. In particular, these QDs exhibit nonspecific binding to fixed cell nuclei and their antibody conjugates have random attachment orientations. This report describes four high-efficiency chemical approaches to conjugate antibodies to compact QDs. Methods include click chemistry and self-assembly through polyhistidine coordination, both with and without adaptor proteins that directionally orient antibodies. Specific and nonspecific labeling are independently analyzed after application of diverse blocking agent classes, and a new assay is developed to quantitatively measure intracellular labeling density based on microtubule stain connectivity. Results show that protein conjugation to the QD surface is required to simultaneously eliminate nonspecific binding and maintain antigen specificity. Of the four conjugation schemes, polyhistidine-based coordination of adaptor proteins with antibody self-assembly yields the highest intracellular staining density and the simplest conjugation procedure. Therefore, antibody and adaptor protein orientation, in addition to blocking optimization, are important determinants of labeling outcomes, insights that can inform translational development of these more compact nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8880911PMC
http://dx.doi.org/10.1021/acs.chemmater.1c00164DOI Listing

Publication Analysis

Top Keywords

antibody self-assembly
8
quantum dots
8
antibody conjugates
8
labeling density
8
nonspecific binding
8
coordination adaptor
8
adaptor proteins
8
antibody
5
self-assembly maximizes
4
maximizes cytoplasmic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!