Bioprosthetic heart valves (BHVs) are known for their lower thrombogenicity rates and excellent hemodynamic parameters similar to native valves. However, the lifespan of these medical devices is limited to 15 years due to the structural valve degeneration. One of the mechanisms underlying functional impairment and calcification of BHVs includes proteolytic degradation of biomaterials. However, proteases found in xenogeneic BHVs tissue remain poorly studied. In this study using the dot blot assay, we have performed a screening analysis of proteolytic enzymes and their inhibitors in the leaflets of five BHVs explanted due to their dysfunction. Five aortic valves (AVs) explanted due to calcific aortic valve disease were studied as a comparison group. The results of the study have demonstrated that at least 17 proteases and 19 of their inhibitors can be found in BHVs. In the AVs 20 proteases and 21 their inhibitors were identified. Small quantitative differences were noted between proteomic profiles of the BHVs and AVs. Matrix metalloproteinases (MMPs) were expressed in BHVs and AVs at comparable levels, but the level of tissue inhibitors of metalloproteinases-1/-2 and RECK protein in implant tissues was lower than in natural valves. Probably, excessive activity of MMPs cannot be counterbalanced by their inhibitors in BHVs and therefore MMPs can degrade prosthetic biomaterial. Moreover, the detection of a wide range of proteolytic enzymes and their inhibitors in the degenerated BHVs suggests the existence of several pathophysiological pathways that can lead to structural valve degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.18097/PBMC20226801068DOI Listing

Publication Analysis

Top Keywords

proteolytic enzymes
12
enzymes inhibitors
12
bhvs avs
12
bhvs
9
analysis proteolytic
8
inhibitors leaflets
8
bioprosthetic heart
8
heart valves
8
structural valve
8
valve degeneration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!