AI Article Synopsis

Article Abstract

The role of partner proteins in the formation of functional complexes in cytochrome P450 systems was investigated by means of optical biosensor technique. Kinetic constants and equilibrium dissociation constants of complexes of cytochrome CYP11A1 (P450scc) with wild-type adrenodoxin (Adx WT) and mutant forms of adrenodoxin R106D and D109R were determined using an optical biosensor. Wild-type adrenodoxin (Kd = (1.23±0.09)⋅10⁻⁶ M) and mutant D109R (Kd = (2.37±0.09)⋅10⁻⁸ M) formed complexes with cytochrome P450scc. For the R106D mutant, no complex formation was detected. To investigate the possibility of the participation of adrenodoxins and their mutant variants in the process of electron transfer as electron donors in mitochondrial cytochrome P450 systems, the electrochemical properties of these iron-sulfur proteins Adx WT and mutant forms of adrenodoxins were studied. Adx WT, mutant forms R106D and D109R have redox potentials E1/2 significantly more negative than cytochromes P450 (-579±10 mV, -590±15 mV, and -528±10 mV, respectively). These results suggest that Adx WT and mutant forms may be electron donors in the cytochrome P450 systems.

Download full-text PDF

Source
http://dx.doi.org/10.18097/PBMC20226801047DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
16
adx mutant
16
mutant forms
16
complexes cytochrome
12
p450 systems
12
optical biosensor
8
wild-type adrenodoxin
8
r106d d109r
8
electron donors
8
mutant
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!