Pharmacokinetic/Pharmacodynamic Assessment of Selective Phosphodiesterase Inhibitors in a Mouse Model of Autoimmune Hepatitis.

J Pharmacol Exp Ther

Department of Pharmacokinetics and Physical Pharmacy (A.Ś., E.W.) and Department of Toxicological Biochemistry (B.P.), Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; and Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (W.J.J., A.Ś.)

Published: May 2022

Autoimmune hepatitis (AIH) is a life-threatening disorder currently treated with nonspecific immunosuppressive drugs. It is postulated that phosphodiesterase (PDE) inhibitors, as agents exerting anti-inflammatory and immunomodulatory activities, may constitute a possible treatment of autoimmune disorders. This study develops a pharmacokinetic/pharmacodynamic (PK/PD) model to assess the effects of PDE-selective inhibitors, namely, cilostazol (PDE3), rolipram (PDE4), and BRL-50481 (PDE7), in a mouse model of AIH. The pharmacokinetics of the PDE inhibitors (PDEi) were assessed in male BALB/c mice after intraperitoneal administration. In pharmacodynamic studies, mice received PDEi and AIH was induced in these animals by intravenous injection of concanavalin A (ConA). Serum drug concentrations, tumor necrosis factor (TNF), interleukin 17 (IL-17), and aminotransferase activities were quantified. The PK/PD analysis was performed using ADAPT5 software. The PK/PD model assumes inhibition of cAMP hydrolysis in T cells by PDEi, ConA-triggered formation of TNF and IL-17, suppression of TNF and IL-17 production by cAMP, and stimulatory effects of TNF and IL-17 on the hepatic release of aminotransferases. Selective blockage of PDE4 leads to the highest inhibition of cAMP degradation in T cells and amelioration of disease outcomes. However, inhibition of both PDE3 and PDE7 also contribute to this effect. The proposed PK/PD model may be used to assess and predict the activities of novel PDEi and their combinations in ConA-induced hepatitis. A balanced suppression of different types of PDE appears to be a promising treatment option for AIH; however, this hypothesis warrants testing in humans based on translation of the PK/PD model into clinical settings. SIGNIFICANCE STATEMENT: A novel PK/PD model of PDE inhibitor effects in mice with ConA-induced autoimmune hepatitis was developed involving a mechanistic component describing changes in cAMP concentrations in mouse T cells. According to model predictions, inhibition of PDE4 in T cells causes the highest cAMP elevation in T cells, but suppression of PDE3 and PDE7 also contribute to this effect. A balanced inhibition of PDE3, PDE4, and PDE7 appears to be a promising treatment strategy for AIH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073951PMC
http://dx.doi.org/10.1124/jpet.121.001004DOI Listing

Publication Analysis

Top Keywords

pk/pd model
20
autoimmune hepatitis
12
tnf il-17
12
model
8
mouse model
8
pde inhibitors
8
model assess
8
inhibition camp
8
inhibition pde3
8
pde3 pde7
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!