Acoustic holograms can encode complex wavefronts to compensate the aberrations of a therapeutical ultrasound beam propagating through heterogeneous tissues such as the skull, and simultaneously, they can generate diffraction-limited acoustic images, that is, arbitrary shaped focal spots. In this work, we numerically study the performance of acoustic holograms focusing at the thalamic nuclei when the source is located at the temporal bone window. The temporal window is the thinnest area of the lateral skull and it is mainly hairless, so it is a desirable area through which to transmit ultrasonic waves to the deep brain. However, in targeting from this area the bilateral thalamic nuclei are not aligned with the elongated focal spots of conventional focused transducers, and in addition, skull aberrations can distort the focal spot. We found that by using patient-specific holographic lenses coupled to a single-element 650-kHz-frequency 65-mm-aperture source, the focal spot can be sharply adapted to the thalamic nuclei in a bilateral way while skull aberrations are mitigated. Furthermore, the performance of these holograms was studied under misalignment errors between the source and the skull, concluding that for misalignments up to 5°, acoustic images are correctly restored. This work paves the way to designing clinical applications of transcranial ultrasound such as blood-brain barrier opening for drug delivery or deep-brain neuromodulation using this low-cost and personalized technology, presenting desirable aspects for long-term treatments because the patient's head does not need to be shaved completely and skull heating is low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.01.010 | DOI Listing |
Phys Med Biol
December 2024
Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Transcranial ultrasound is used in a variety of treatments, including neuromodulation, opening the blood-brain barrier (BBB), and high intensity focused ultrasound (HIFU) therapies. To ensure safety and efficacy of these treatments, numerical simulations of the ultrasound field within the brain are used for treatment planning and evaluation. This study investigates the accuracy of numerical modelling of the propagation of focused ultrasound through cranial bones.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
School of Microelectronics, Xidian University, Xi'an 710071, China.
Adv Sci (Weinh)
November 2024
State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
Bacterial infection is a crucial factor resulting in public health issues worldwide, often triggering epidemics and even fatalities. The accurate, rapid, and convenient detection of viable bacteria is an effective method for reducing infections and illness outbreaks. Here, an unsupervised learning-assisted and surface acoustic wave-interdigital transducer-driven nano-lens holography biosensing platform is developed for the ultrasensitive and amplification-free detection of viable bacteria.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA.
Acoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2024
Nanodroplets are phase-changing agents that have shown great potential for ultrasound applications. When ultrasound is applied, nanodroplets can undergo a phase transition into gas bubbles, enabling cavitation that can be used to reduce the pressure threshold required for mechanical ablation of tissues. Effective tissue fractionation depends on precise vaporization to achieve uniform and predictable bubble formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!