Equations have been developed for the relaxation times for a variety of mechanisms involving enzyme isomerization coupled to proton transfers. The concentration and pH dependences of the relaxation time have been calculated and graphed for a number of representative mechanisms. We find that for most of the mechanisms examined, the relaxation time is not only pH but also strongly concentration dependent. The concentration dependence results from finite perturbations of the hydrogen ion concentration. For the systems tested, the relaxation time shows a clear concentration dependence at enzyme concentrations below 200 microM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00577a023 | DOI Listing |
Pharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
Pharmaceutics
December 2024
Department of Physico-Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania.
Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system.
View Article and Find Full Text PDFPharmaceutics
December 2024
Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmacy Practice, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
Gabapentin has variable pharmacokinetics (PK), which contributes to difficulty in dosing and increased risk of adverse events. The objective of this study was to leverage gabapentin concentrations from therapeutic drug monitoring (TDM) to develop a population PK (popPK) model and characterize significant covariates that impact gabapentin PK. Data were retrospectively collected from 82 hospitalized adult patients with TDM gabapentin concentrations.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center (MPC), P. M. de Lardizábal 5, 20018 San Sebastián, Spain.
This work connects the calorimetric responses of different rubber-resin blends with varying resin contents with their alpha relaxation dynamics. We used differential scanning calorimetry and broadband dielectric spectroscopy to characterize the calorimetric and dielectric responses of styrene-butadiene, polybutadiene, and polyisoprene with different resin contents. To model the results, we used the Gordon-Taylor equation combined with an extension of the Adam-Gibbs approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!