AI Article Synopsis

Article Abstract

Background: Acquired brain injuries, such as stroke, are a major cause of long-term disability worldwide. Intracortical microstimulation (ICMS) can be used successfully to assist in guiding appropriate connections to restore lost sensorimotor integration. Activity-Dependent Stimulation (ADS) is a specific type of closed-loop ICMS that aims at coupling the activity of two different brain regions by stimulating one in response to activity in the other. Recently, ADS was used to effectively promote behavioral recovery in rodent models following a unilateral traumatic brain injury in the primary motor cortex. While behavioral benefits have been described, the neurophysiological changes in spared areas in response to this type of stimulation have not been fully characterized. Here we explored how single-unit spiking activity is impacted by a focal ischemic lesion and, subsequently, by an ADS treatment.

Methods: Intracortical microelectrode arrays were implanted in the ipsilesional rostral forelimb area (RFA) to record spike activity and to trigger intracortical microstimulation in the primary somatosensory area (S1) of anaesthetized Long Evans rats. An ischemic injury was induced in the caudal forelimb area through microinjections of Endothelin-1. Activity from both RFA and S1 was recorded and analyzed off-line by evaluating possible changes, either induced by the lesion in the Control group or by stimulation in the ADS group.

Results: We found that the ischemic lesion in the motor area led to an overall increase in spike activity within RFA and a decrease in S1 with respect to the baseline condition. Subsequent treatment with ADS increased the firing rate in both RFA and S1. Post-stimulation spiking activity was significantly higher compared to pre-stimulation activity in the ADS animals versus non-stimulated controls. Moreover, stimulation promoted the generation of highly synchronized bursting patterns in both RFA and S1 only in the ADS group.

Conclusions: This study describes the impact on single-unit activity in ipsilesional areas immediately following a cortical infarct and demonstrates that application of ADS is effective in altering this activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883660PMC
http://dx.doi.org/10.1186/s42234-022-00086-yDOI Listing

Publication Analysis

Top Keywords

activity
11
intracortical microstimulation
8
ads
8
stimulation ads
8
activity ads
8
spiking activity
8
ischemic lesion
8
forelimb area
8
spike activity
8
activity rfa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!