Background: Temporomandibular disorder (TMD) perturbs the tongue motor control and consequently impairs oral function, but strength training reduces this impairment. However, tongue motor control is widely reduced to a matter of strength.
Objectives: To investigate the accuracy of the tongue placement as a measure of tongue motor control in patients with TMD compared with age- and sex-matched healthy participants.
Material And Methods: This proof-of-concept case-control study was prospective, observational, and part of the TMIQ study (NCT04102306). After pointing against a wood stick while maintaining the tongue as sharp as possible, the examinator drew the contour of the tongue print on the wood stick, which was then scanned for image analyses to compute the area for each participant using ImageJ.
Results: A total of 94 participants were included, all patients with TMD (n = 47) diagnosed with myalgia, 61% with intra-articular joint disorder accordingly to the DC/TMD. The median (IQR) tongue print area was 117 (111) mm for the TMD group and 93.5 (76.2) mm for the control group (V = 352, p = .04) and the median [95% confidence interval] difference was 25.4 [1.3; 51.0] mm². Overlapping of the 95% confidence intervals of the area evidenced no significant difference between the categories of the DC/TMD. The corrected each area-total correlation (r = .24) suggests a reasonably homogenous thus valid measure.
Conclusion: The results suggest that TMD impairs the motor control of the tongue. Therefore, the sharpest tongue pointing test may constitute a simple and accessible clinical tool to assess the accuracy of tongue placement in TMD patients. The study was registered on ClinicalTrial.gov with identification number NCT04102306.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033548 | PMC |
http://dx.doi.org/10.1002/cre2.549 | DOI Listing |
Appl Physiol Nutr Metab
January 2025
Queensland University of Technology, School of Exercise and Nutrition Sciences, Kelvin Grove, Queensland, Australia;
This study examined the effects of core and muscle temperature on force steadiness and motor unit discharge rate (MUDR) variability after a hot-water immersion session. Fifteen participants (6 women; 25±6 years) completed neuromuscular assessments before and after either 42ºC (hot) or 36ºC (control) water immersion. Force steadiness was measured during knee extension, while HD-sEMG signals were recorded from vastus lateralis and medialis for MUDR variability analysis.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America.
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
This study aims to provide a theoretical foundation for the future management of diabetes at various stages induced by a high-fat diet. Specifically, it seeks to determine the appropriate pharmacological interventions for each phase of diabetes development and the targeted therapeutic directions at different stages of diabetes progression. This investigation employed C57BL6 mice as experimental subjects, successfully establishing an insulin resistance model through a 12-week high-fat diet.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Biorobotics Laboratory, EPFL, Lausanne, Switzerland.
Humans can perform movements in various physical environments and positions (corresponding to different experienced gravity), requiring the interaction of the musculoskeletal system, the neural system and the external environment. The neural system is itself comprised of several interactive components, from the brain mainly conducting motor planning, to the spinal cord (SC) implementing its own motor control centres through sensory reflexes. Nevertheless, it remains unclear whether similar movements in various environmental dynamics necessitate adapting modulation at the brain level, correcting modulation at the spinal level, or both.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan.
Introduction: Extrapolated reference values (E-Ref) procedure is a new method for determining the cutoff value without collecting the control data. We tried to apply this method to determine the cutoff value for the distal motor latency of the median nerve (median DML). During this process, we found two pitfalls of the E-Ref method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!