A vortex-assisted dispersive micro-solid-phase extraction procedure using a new and green sorbent was developed as a simple, fast, and efficient sample preparation method for the extracting five pesticides in several fruit juice samples. In this study, for the first time, riboflavin was used as an efficient sorbent. A few milligrams of riboflavin was directly added into the aqueous solution containing the analytes to adsorb them. After adsorption the analytes, they were desorbed and more concentrated by a dispersive liquid-liquid microextraction procedure. The influence of several effective parameters such as amount of riboflavin, pH, vortex time, eluent nature and volume, and extraction solvent type and volume on the extraction efficiency was investigated. In optimal conditions, linear ranges of the calibration curves were broad. The limits of detection and quantification were attained in the ranges of 0.56-1.5 and 1.9-0.52 ng mL , respectively. The proposed method demonstrated to be suitable for concurrent extraction of the studied pesticides in various fruit juice samples with high enrichment factors (320-360) and precision (relative standard deviation ≤7.8% for intra- [n = 6] and interday [n = 4] precisions at a concentration of 25 ng mL of each pesticide).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202100916 | DOI Listing |
J Hazard Mater
January 2025
Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFThe conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State Spain and co-rapporteur Member State Germany for the pesticide active substance phosphine are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. The conclusions were reached on the basis of the evaluation of the representative uses of phosphine as a post-harvest indoor insecticide to control insects infesting stored grains (barley, oat, rye, wheat), cacao and coffee beans, tree nuts and oilseeds and dried fruit via gassing application (gas-tight rooms/container).
View Article and Find Full Text PDFPhytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Economics, University of Oregon, Eugene, OR 97403.
The advent of herbicide-tolerant genetically modified (GM) crops spurred rapid and widespread use of the herbicide glyphosate throughout US agriculture. In the two decades following GM-seeds' introduction, the volume of glyphosate applied in the United States increased by more than 750%. Despite this breadth and scale, science and policy remain unresolved regarding the effects of glyphosate on human health.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran. Electronic address:
Fire blight, caused by Erwinia amylovora, is a significant threat to fruit crops, with limited biocontrol methods. This study aimed to develop a nanosystem using mesoporous silica nanoparticles (MSNs) loaded with a phenolic plant extract (ZP) derived from Myrtus communis, Thymus vulgaris, and Curcuma longa, and coated with natural biopolymers Gum Tragacanth (GT) and sodium alginate (SA). The MSNs were synthesized and characterized by XRD, FTIR, and TEM, exhibiting a specific surface area of about 750 m/g and an average pore diameter of 5 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!