Design, synthesis and antibacterial evaluation of pleuromutilin derivatives.

Bioorg Med Chem

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China. Electronic address:

Published: April 2022

We report herein the design, synthesis, and structure-activity relationship studies of pleuromutilin derivatives containing urea/thiourea functionalities. The antibacterial activities of these new pleuromutilin derivatives were evaluated in vitro against Gram-positive pathogens (GPPs) (Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecium) and Mycoplasma pneumoniae by the broth dilution method. Most of the targeted compounds exhibit good potency in inhibiting the growth of pathogens including Methicillin-susceptible S. aureus (MSSA, ATCC29213, MIC: 0.0625-16 μg/mL), Methicillin-resistant S. aureus (MRSA, ATCC43300, MIC: 0.125-16 μg/mL) and M. pneumoniae (ATCC15531 MIC: 0.125-1 μg/mL, ATCC29342 MIC: 0.0625-0.25 μg/mL and drug resistant strain MIC: 0.5-2 μg/mL). In particular, the compounds 6m and 6n containing phenyl-urea group showed excellent activity with the MIC value less than 0.0625 μg/mL against S. aureus ATCC29213. The compound 6h exhibited better activity than tiamulin against Methicillin-resistant S. aureus ATCC43300.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2022.116676DOI Listing

Publication Analysis

Top Keywords

pleuromutilin derivatives
12
design synthesis
8
methicillin-resistant aureus
8
mic
6
aureus
5
synthesis antibacterial
4
antibacterial evaluation
4
evaluation pleuromutilin
4
derivatives report
4
report design
4

Similar Publications

The novel pleuromutilin derivative 22-((4-((4-nitrophenyl)acetamido)phenyl)thio)deoxy pleuromutilin possesses robust anti-mycoplasma activity both and .

Front Pharmacol

December 2024

Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Objective: Mycoplasmas are structurally simple pathogenic microorganisms that can cause a wide range of diseases in humans and animals and conventional antibiotic therapies of fluoroquinolones and tetracyclines are toxic to young children and young animals and macrolide resistance is increasing. In this context, new anti-mycoplasma antimicrobial agents need to be developed. 22-((4-((4-nitrophenyl)acetamido)phenyl)thio)deoxypleuromutilin (compound 16C) is a novel acetamine phenyl pleuromutilin derivative.

View Article and Find Full Text PDF

The semisynthetic derivatization of natural products is crucial for their continued development as antibiotics. While commercial pleuromutilin derivatives depend on amines for solubility, we demonstrate the high activity and solubility of oligoethylene glycol-substituted pleuromutilins achieved via a one-pot deprotection/attachment approach using thiolates protected as thioesters. The bifunctional linker synthesis is versatile and can be broadly applied to other chemistries.

View Article and Find Full Text PDF

Treating methicillin-resistant (MRSA) infection remains one of the most difficult challenges in clinical practice, primarily due to the resistance of MRSA to multiple antibiotics. Therefore, there is an urgent need to develop novel antibiotics with high efficacy and low cross-resistance rates. In this study, a series of novel pleuromutilin derivatives with coumarin structures were synthesized and subsequently assessed for their biological activities.

View Article and Find Full Text PDF

In an effort to expand the spectrum of the antibacterial activity of pleuromutilin, a series of amine- and polyamine-linked analogues were prepared and evaluated for activities against a panel of microorganisms. Simple C-22-substituted amino esters or diamines , , , and , as well as two unusual amine-linked bis-pleuromutilin examples and , displayed variable levels of activity towards ATCC 25923 and methicillin-resistant , but with no detectable activities towards Gram-negative bacteria. Fortunately, the incorporation of a longer-chain triamine or polyamine (spermine) at C-22 did afford analogues (, ) that exhibited activity towards both ATCC 25923 and ATCC 25922 with MIC 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!