Diffusion-based biophysical models have been used in several recent works to study the microenvironment of brain tumours. While the pathophysiological interpretation of the parameters of these models remains unclear, their use as signal representations may yield useful biomarkers for monitoring the treatment and the progression of this complex and heterogeneous disease. Up to now, however, no study was devoted to assessing the mathematical stability of these approaches in cancerous brain regions. To this end, we analyzed in 11 brain tumour patients the fitting results of two microstructure models (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique) and of a signal representation (Diffusion Kurtosis Imaging) to compare the reliability of their parameter estimates in the healthy brain and in the tumoral lesion. The framework of our between-tissue analysis included the computation of 1) the residual sum of squares as a goodness-of-fit measure 2) the standard deviation of the models' derived metrics and 3) models' sensitivity functions to analyze the suitability of the employed protocol for parameter estimation in the different microenvironments. Our results revealed no issues concerning the fitting of the models in the tumoral lesion, with similar goodness of fit and parameter precisions occurring in normal appearing and pathological tissues. Lastly, with the aim of highlight possible biomarkers, in our analysis we briefly discuss the correlation between the metrics of the three techniques, identifying groups of indices which are significantly collinear in all tissues and thus provide no additional information when jointly used in data-driven analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881729 | PMC |
http://dx.doi.org/10.1016/j.nicl.2022.102968 | DOI Listing |
ACS Nano
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2).
View Article and Find Full Text PDFSci Adv
January 2025
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
Aims: To test utility of diffusion MRI-derived indices in carotid endarterectomy (CEA), change of diffusion tensor imaging (DTI) metrics, cerebral white matter (WM) volumes were evaluated and predictors of overall mortality determined.
Methods: Prospectively enrolled participants had preoperative, immediate and late postoperative DTI after CEA. WM volumes, DTI metrics (fractional anisotropy, FA; axial, radial, mean diffusivities; AD, RD, MD, respectively) were calculated for the index/contralateral hemispheres at all time points.
PLoS One
January 2025
School of Biological Sciences, Seoul National University, Seoul, South Korea.
Early-life malnutrition adversely affects nearly all organ systems, resulting in multiple physiological adaptations, including growth restriction and muscle and bone loss. Although there is growing evidence that probiotics effectively improve systemic growth under malnourished conditions in different animal models, our knowledge of the beneficial effects of probiotics on various organs is limited. Here, we show that Lactobacillus plantarum strain WJL (LpWJL) can mitigate skeletal muscle and bone loss in protein-malnourished juvenile mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!