Predicting drug-target interactions (DTIs) is essential for both drug discovery and drug repositioning. Recently, deep learning methods have achieved relatively significant performance in predicting DTIs. Generally, it needs a large amount of approved data of DTIs to train the model, which is actually tedious to obtain. In this work, we propose DeepFusion, a deep learning based multi-scale feature fusion method for predicting DTIs. To be specific, we generate global structural similarity feature based on similarity theory, convolutional neural network and generate local chemical sub-structure semantic feature using transformer network respectively for both drug and protein. Data experiments are conducted on four sub-datasets of BIOSNAP, which are 100%, 70%, 50% and 30% of BIOSNAP dataset. Particularly, using 70% sub-dataset, DeepFusion achieves ROC-AUC and PR-AUC by 0.877 and 0.888, which is close to the performance of some baseline methods trained by the whole dataset. In case study, DeepFusion achieves promising prediction results on predicting potential DTIs in case study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2022.02.007DOI Listing

Publication Analysis

Top Keywords

deep learning
12
deepfusion deep
8
learning based
8
based multi-scale
8
multi-scale feature
8
feature fusion
8
fusion method
8
method predicting
8
predicting drug-target
8
drug-target interactions
8

Similar Publications

Purpose: Identifying muscles linked to postoperative physical function can guide protocols to enhance early recovery following total hip arthroplasty (THA). This study aimed to evaluate the association of preoperative pelvic and thigh muscle volume and quality with early physical function after THA in patients with unilateral hip osteoarthritis (HOA).

Methods: Preoperative Computed tomography (CT) images of 61 patients (eight males and 53 females) with HOA were analyzed.

View Article and Find Full Text PDF

In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.

View Article and Find Full Text PDF

Highly accurate real-space electron densities with neural networks.

J Chem Phys

January 2025

Microsoft Research AI for Science, 21 Station Road, Cambridge CB1 2FB, United Kingdom.

Variational ab initio methods in quantum chemistry stand out among other methods in providing direct access to the wave function. This allows, in principle, straightforward extraction of any other observable of interest, besides the energy, but, in practice, this extraction is often technically difficult and computationally impractical. Here, we consider the electron density as a central observable in quantum chemistry and introduce a novel method to obtain accurate densities from real-space many-electron wave functions by representing the density with a neural network that captures known asymptotic properties and is trained from the wave function by score matching and noise-contrastive estimation.

View Article and Find Full Text PDF

With the global population aging at an unprecedented rate, there is a need to extend healthy productive life span. This review examines how Deep Learning (DL) and Generative Artificial Intelligence (GenAI) are used in biomarker discovery, deep aging clock development, geroprotector identification and generation of dual-purpose therapeutics targeting aging and disease. The paper explores the emergence of multimodal, multitasking research systems highlighting promising future directions for GenAI in human and animal aging research, as well as clinical application in healthy longevity medicine.

View Article and Find Full Text PDF

Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!