A conditional GABAergic synaptic vesicle marker for Drosophila.

J Neurosci Methods

Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA. Electronic address:

Published: April 2022

Background: Throughout the animal kingdom, GABA is the principal inhibitory neurotransmitter of the nervous system. It is essential for maintaining the homeostatic balance between excitation and inhibition required for the brain to operate normally. Identification of GABAergic neurons and their GABA release sites are thus essential for understanding how the brain regulates the excitability of neurons and the activity of neural circuits responsible for numerous aspects of brain function including information processing, locomotion, learning, memory, and synaptic plasticity, among others.

New Method: Since the structure and features of GABA synapses are critical to understanding their function within specific neural circuits of interest, here we developed and characterized a conditional marker of GABAergic synaptic vesicles for Drosophila, 9XV5-vGAT.

Results: 9XV5-vGAT is validated for conditionality of expression, specificity for localization to synaptic vesicles, specificity for expression in GABAergic neurons, and functionality. Its utility for GABAergic neurotransmitter phenotyping and identification of GABA release sites was verified for ellipsoid body neurons of the central complex. In combination with previously reported conditional SV markers for acetylcholine and glutamate, 9XV5-vGAT was used to demonstrate fast neurotransmitter phenotyping of subesophageal ganglion neurons.

Comparison With Existing Methods: This method is an alternative to single cell transcriptomics for neurotransmitter phenotyping and can be applied to any neurons of interest represented by a binary transcription system driver.

Conclusion: A conditional GABAergic synaptic vesicle marker has been developed and validated for GABA neurotransmitter phenotyping and subcellular localization of GABAergic synaptic vesicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8940707PMC
http://dx.doi.org/10.1016/j.jneumeth.2022.109540DOI Listing

Publication Analysis

Top Keywords

gabaergic synaptic
16
neurotransmitter phenotyping
16
synaptic vesicles
12
conditional gabaergic
8
synaptic vesicle
8
vesicle marker
8
gabaergic neurons
8
gaba release
8
release sites
8
neural circuits
8

Similar Publications

Moderate prenatal alcohol exposure alters GABAergic transmission and the actions of acute alcohol in the medial central amygdala of adolescent rats.

Neuropharmacology

December 2024

Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, United States. Electronic address:

Individuals with prenatal alcohol exposure (PAE) are at a higher risk for developing alcohol use disorder (AUD). Using a rat model of moderate PAE (mPAE) on gestational day 12 (G12; ∼2 trimesters in humans), a critical period for amygdala development, we have shown disruptions in medial central amygdala (CeM) function, an important brain region associated with the development of AUD. In addition to this, acute ethanol (EtOH) increases GABA transmission in the CeM of rodents in a sex-dependent manner, a mechanism that potentially contributes to alcohol misuse.

View Article and Find Full Text PDF

Release your inhibitions: The cell biology of GABAergic postsynaptic plasticity.

Curr Opin Neurobiol

December 2024

Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA. Electronic address:

GABAergic synaptic inhibition controls circuit function by regulating neuronal plasticity, excitability, and firing. To achieve these goals, inhibitory synapses themselves undergo several forms of plasticity via diverse mechanisms, strengthening and weakening phasic inhibition in response to numerous activity-induced stimuli. These mechanisms include changing the number and arrangement of functional GABARs within the inhibitory postsynaptic domain (iPSD), which can profoundly regulate inhibitory synapse strength.

View Article and Find Full Text PDF

Development of KCC2 therapeutics to treat neurological disorders.

Front Mol Neurosci

December 2024

Axonis Therapeutics Inc., Boston, MA, United States.

KCC2 is CNS neuron-specific chloride extruder, essential for the establishment and maintenance of the transmembrane chloride gradient, thereby enabling synaptic inhibition within the CNS. Herein, we highlight KCC2 hypofunction as a fundamental and conserved pathology contributing to neuronal circuit excitation/inhibition (E/I) imbalances that underly epilepsies, chronic pain, neuro-developmental/-traumatic/-degenerative/-psychiatric disorders. Indeed, downstream of both acquired and genetic factors, multiple pathologies (e.

View Article and Find Full Text PDF

During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies.

View Article and Find Full Text PDF

Environmental exposure to common pesticide induces synaptic deficit and social memory impairment driven by neurodevelopmental vulnerability of hippocampal parvalbumin interneurons.

J Hazard Mater

December 2024

Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Environmental exposure to pesticides at levels deemed safe by regulatory agencies has been linked to increased risk for neurodevelopmental disorders. Yet, the mechanisms linking exposure to these disorders remain unclear. Here, we show that maternal exposure to the pesticide deltamethrin (DM) at the no observed adverse effect level (NOAEL) disrupts long-term potentiation (LTP) in the hippocampus of adult male offspring three months after exposure, a phenotype absent in female offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!