A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona9q7i2pnq2r6mbbrrdit15ugf4buelsu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acute toxicity of tire wear particles, leachates and toxicity identification evaluation of leachates to the marine copepod, Tigriopus japonicus. | LitMetric

AI Article Synopsis

  • Tire wear particles (TWPs) are recognized as microplastics that pose risks to marine organisms when they accumulate in coastal areas.
  • A toxicity study revealed that the leachate from TWPs has significant acute toxicity, with zinc identified as the main harmful substance among various complex chemicals present.
  • The release of zinc from TWPs into the water is slow and follows a specific pattern, while the organic compound benzothiazole reduces the overall toxicity of the leachate when interacting with zinc.

Article Abstract

Tire wear particles (TWPs) have been characterized as microplastics in recent years, and many of these TWPs will be eventually deposited in coastal areas, leading to adverse effects to marine organisms. Results of the acute toxicity test in this study showed that the 96-h LC50 values of the particles and leachate were 771.4 mg/L (95% CI = 684.4-869.6 mg/L) and 5.34 g/L (95% CI = 4.75-6.07 g/L), respectively. The chemical constituents of TWP and the leachate are very complex, and little research has been conducted to determine which of these constituents contribute to the toxicity of TWP leachate to marine organisms. Therefore, the composition of the TWP and leachate was analyzed, and a variety of chemicals were identified, including metals (Mn, Zn, etc.) and organic compounds (cyclohexanthiol, 4-ethyl-1,2-dimethylbenzene, benzothiazole, stearic acid, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, etc.). In addition, the marine copepod Tigriopus japonicus was applied as a model species in the toxicity identification evaluation study to characterize, identify and confirm the toxicity-causing substances in the TWP leachate. Zn was identified and confirmed as the main toxicant contributing to the toxicity. Furthermore, Zn concentrations in the leachate over time were investigated. The release of Zn from TWPs to the aquatic environment was slow, and conformed to a parabolic model with a release constant k of 2.06. The organic component, benzothiazole, exhibited an antagonistic effect with zinc in the acute toxicity of the TWP leachate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134099DOI Listing

Publication Analysis

Top Keywords

twp leachate
20
acute toxicity
12
tire wear
8
wear particles
8
toxicity identification
8
identification evaluation
8
marine copepod
8
copepod tigriopus
8
tigriopus japonicus
8
marine organisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!