Nanoparticle-delivered Therapeutic Agents Targeting the Tumor Microenvironment for Antitumor Therapy.

Discov Med

National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.

Published: March 2022

In recent years, nanotechnology has been widely used in the field of tumor treatment. Some nanomedicine applications have been approved for tumor treatment, but nanomedicine has not so far demonstrated the anticipated therapeutic effect. In this process, the tumor microenvironment plays a major role. The tumor microenvironment is an internal environment that supports tumor occurrence, development, and metastasis. It is composed of tumor cells and related cells, intercellular substances, capillaries, and biomolecules that pervade both the tumor mass itself and its surrounding area. The tumor microenvironment can be a potential target for tumor treatment. Therefore, nano-antitumor therapy targeting the tumor microenvironment has received widespread attention. This therapy is based on the physiological characteristics of tumors that differ from those of normal tissues. The tumor microenvironment is used as a therapeutic target, and drugs are delivered to the tumor site through nanoparticles-enabled targeting to achieve fast, controllable, and efficient tumor killing. This article reviews basic research such as design principles and applications of nano-antitumor therapeutic strategies targeting the tumor microenvironment, providing a theoretical basis and new research ideas for tumor treatment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor microenvironment
28
tumor
16
tumor treatment
16
targeting tumor
12
treatment nanomedicine
8
microenvironment
7
nanoparticle-delivered therapeutic
4
therapeutic agents
4
targeting
4
agents targeting
4

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5.

Sci Adv

January 2025

Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China.

Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance.

View Article and Find Full Text PDF

On-Demand Controlled Release Multi-Drugs Delivery System for Spatiotemporally Synergizing Antitumor Immunotherapy.

Adv Sci (Weinh)

January 2025

School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.

Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.

View Article and Find Full Text PDF

There is a growing interest in harnessing natural compounds and bioactive phytochemicals to accelerate drug discovery and development, including in the treatment of human cancers. Receptor tyrosine kinases (RTKs) are critical regulators of many fundamental cellular processes and have been implicated in cancer pathogenesis as well as targets for anticancer drug development. The members of TAM, Tyro3, Axl, and MERTK subfamily RTKs, especially Mer, affect immune homeostasis in the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!