Genomic prediction models for traits differing in heritability for soybean, rice, and maize.

BMC Plant Biol

Plant Genetics Research Unit, USDA-ARS, 205 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA.

Published: February 2022

Background: Genomic selection is a powerful tool in plant breeding. By building a prediction model using a training set with markers and phenotypes, genomic estimated breeding values (GEBVs) can be used as predictions of breeding values in a target set with only genotype data. There is, however, limited information on how prediction accuracy of genomic prediction can be optimized. The objective of this study was to evaluate the performance of 11 genomic prediction models across species in terms of prediction accuracy for two traits with different heritabilities using several subsets of markers and training population proportions. Species studied were maize (Zea mays, L.), soybean (Glycine max, L.), and rice (Oryza sativa, L.), which vary in linkage disequilibrium (LD) decay rates and have contrasting genetic architectures.

Results: Correlations between observed and predicted GEBVs were determined via cross validation for three training-to-testing proportions (90:10, 70:30, and 50:50). Maize, which has the shortest extent of LD, showed the highest prediction accuracy. Amongst all the models tested, Bayes B performed better than or equal to all other models for each trait in all the three crops. Traits with higher broad-sense and narrow-sense heritabilities were associated with higher prediction accuracy. When subsets of markers were selected based on LD, the accuracy was similar to that observed from the complete set of markers. However, prediction accuracies were significantly improved when using a subset of total markers that were significant at P ≤ 0.05 or P ≤ 0.10. As expected, exclusion of QTL-associated markers in the model reduced prediction accuracy. Prediction accuracy varied among different training population proportions.

Conclusions: We conclude that prediction accuracy for genomic selection can be improved by using the Bayes B model with a subset of significant markers and by selecting the training population based on narrow sense heritability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881851PMC
http://dx.doi.org/10.1186/s12870-022-03479-yDOI Listing

Publication Analysis

Top Keywords

prediction accuracy
28
genomic prediction
12
training population
12
prediction
11
prediction models
8
genomic selection
8
set markers
8
breeding values
8
accuracy
8
accuracy genomic
8

Similar Publications

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!