How microorganisms tell the truth of potentially toxic elements pollution in environment.

J Hazard Mater

School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province 230601, China.

Published: June 2022

Potentially toxic elements (PTEs) posed a major hazard to microbial community in river sediments, but the way how different kinds of microorganisms responses to elements pollution has not been clearly understood. The target of this research was to discriminate the apposite indicators for diagnosing elements pollution based on the sensitivity of microbial abundance, biodiversity, predicted metabolic functions to PTEs (Cu, Cd, Cr, Ni, Pb, Zn, As and Hg). Considering Huaihe River Basin as the main subject, sediment samples were gathered from 135 sites. Ni, Zn and Cd significantly influenced the microbial communities and predicted functions. In general, the microbial sensitivity to PTEs was bacteria > archaea. Geo-accumulation index and potential ecological risk (PER) index suggested Hg and Cd were the significant contaminates and posed the most serious ecological risk in sediments. Structural Equation Model identified the bioindicators 1/nitrate reduction and rara taxa (Azoarcus) as reflect and speculate Hg and Cd pollution, respectively. PER was predicted by 1/nitrate reduction and rare taxa (Phaeodactylibacter and Illumatobacter). Results elucidated the rather role of rare taxa in indicating PTEs pollution. The findings contributed to provide useful reference for bioremediation of contaminated sediments under PTEs stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128456DOI Listing

Publication Analysis

Top Keywords

elements pollution
12
toxic elements
8
ecological risk
8
1/nitrate reduction
8
rare taxa
8
pollution
5
ptes
5
microorganisms truth
4
truth toxic
4
elements
4

Similar Publications

The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.

View Article and Find Full Text PDF

The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.

View Article and Find Full Text PDF

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!