Microglia as therapeutic targets for central nervous system remyelination.

Curr Opin Pharmacol

United Kingdom Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom; Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, United Kingdom; Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom. Electronic address:

Published: April 2022

Failed remyelination underpins neurodegeneration and central nervous system (CNS) dysfunction with aging and progression of neurological diseases, such as multiple sclerosis and Alzheimer's disease. Existing therapies have shown limited efficacy in halting disease progression in humans, highlighting the need to identify pro-remyelination treatments. Microglia are CNS-resident macrophages with critical roles in the regulation of remyelination, representing a promising therapeutic target. However, there are currently no therapeutics which specifically target microglia. Recent studies have revealed that microglia are a heterogenous population with distinct transcriptional states in health and disease conditions, including during remyelination, suggesting functional differences between states. Here, we discuss the potential contributions of different microglia states to degenerative and regenerative processes, examine the potential to target microglia in a state-specific manner to promote remyelination and consider the key issues to be addressed before such therapies can be clinically applied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2022.102188DOI Listing

Publication Analysis

Top Keywords

central nervous
8
nervous system
8
target microglia
8
microglia
6
remyelination
5
microglia therapeutic
4
therapeutic targets
4
targets central
4
system remyelination
4
remyelination failed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!