Introduction: Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an activator of Ras protein, which plays significant roles in both the inflammatory response and immune activation. This study determined the role of RasGRP4 in diabetic kidney disease (DKD) progression.
Methods: CRISPR/Cas9 technology was used to establish RasGRP4 knockout (KO) mice. Diabetes was induced by a high-fat diet combined with five consecutive daily intraperitoneal injections of streptozotocin (60 mg/kg) in C57BL/6J wild-type (WT) mice and RasGRP4 KO mice. Hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining were used to observe the histology of pathological injury. Immunohistochemical staining was used to analyze inflammatory cell infiltration. Quantitative PCR and Western blotting were used to detect the expression of inflammatory mediators and the activation of signaling pathways in renal tissues. In vitro cell co-culture experiments were performed to explore the interactions between peripheral blood mononuclear cells (PBMCs) and glomerular endothelial cells (GEnCs).
Results: RasGRP4 KO mice developed less severe diabetic kidney injury compared to WT mice, exhibiting lower proteinuria, reduced CD3 T lymphocyte and F4/80 macrophage infiltration, less inflammatory mediator expression including interleukin 6, tumor necrosis alpha, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, and lower expression levels of critical signal transduction molecules in the NLR family pyrin domain-containing 3 inflammasome and mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathways in the diabetic kidney. In vitro experiments showed that the adhesion function of PBMCs of RasGRP4 KO mice was reduced compared to that of WT mice. Moreover, the expression of adhesion molecules and critical signal transduction molecules in the NLRP3 inflammasome and MAPK/NF-κB signaling pathways in GEnCs was stimulated by the supernatant of PBMCs, which were derived from RasGRP4 KO mice treated with high glucose and were also significantly reduced compared to those derived from WT mice.
Conclusion: RasGRP4 promotes the inflammatory injury mediated by PBMCs in diabetes, probably by regulating the interaction between PBMCs and GEnCs and further activating the NLRP3 inflammasome and MAPK/NF-κB signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2022.155177 | DOI Listing |
Diabetes Metab J
January 2025
NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
View Article and Find Full Text PDFJCI Insight
December 2024
NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
Diabetes mellitus (DM) is acknowledged as an independent risk factor for acute kidney injury. Ras guanine nucleotide-releasing protein-4 (RasGRP4) exerts a notable role in modulating immune-inflammatory responses and kidney disease progression in diabetes. Herein, we delved into the specific role and mechanism of RasGRP4 in diabetic renal ischemia-reperfusion injury.
View Article and Find Full Text PDFDev Cell
July 2023
Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility.
View Article and Find Full Text PDFMetabolism
June 2022
NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China. Electronic address:
Introduction: Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an activator of Ras protein, which plays significant roles in both the inflammatory response and immune activation. This study determined the role of RasGRP4 in diabetic kidney disease (DKD) progression.
Methods: CRISPR/Cas9 technology was used to establish RasGRP4 knockout (KO) mice.
Cell Commun Signal
August 2019
Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai, 200030, China.
Background: This study aimed to confirm that blocking RasGRP4 can effectively slow down the growth of DLBCL both in vitro and in vivo and ascertain the role of RasGRP4 in the prognosis of DLBCL clinically.
Methods: RasGRP4 expression levels were examined in benign tissues and lymphomas. In order to verify somatic mutation in RasGRP4 gene, cDNA sequencing was performed in DLBCL patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!