Acute stress exerts pleiotropic actions on learning behaviors. The induced negative effects are sometimes adopted to measure the efficacy of particular drugs. Until now, there are no detailed experimental data on the time-gradient effects of acute stress. Here, we developed the time gradient acute restraint stress (ARS) model to precisely assess the roles of different restrain times on inducing acute stress. Time gradient ARS facilitates escape behaviors and learning outcomes, peaking at 2 h-ARS and then declining to baseline at 3.5 h-ARS as confirmed by time gradient post-stress data. Furthermore, time gradient ARS activates glucocorticoid receptor (GR) phosphorylation site at Serine211 (P S221) as an inverted V-shaped pattern peaking at 2 h-ARS, whereas that of the GR phosphorylation site at Serine226 (P S226) from 2 h-ARS to 3.5 h-ARS. The 2 h-ARS but not 3.5 h-ARS enhances synaptic plasticity and genes transcription associated with learning and memory in the hippocampus of male mice. The Cdk5 inhibitor, roscovitine, blocks this facilitation effect by intervening in GR phosphorylation at Serine211 in the 2 h-ARS mice. Altogether, these findings show that the time gradient ARS selectively activates GR phospho-isoforms and differentially influences the behaviors along with maintaining a relationship between 2 h-ARS and Cdk5/GR P S211-mediated transcriptional activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2022.114023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!