The switching variability caused by intrinsic stochasticity of the ionic/atomic motions during the conductive filaments (CFs) formation process largely limits the applications of diffusive memristors (DMs), including artificial neurons, neuromorphic computing and artificial sensory systems. In this study, a DM device with improved device uniformity based on well-crystallized two-dimensional (2D) h-BN, which can restrict the CFs formation from three to two dimensions due to the high migration barrier of Ag between h-BN interlayer, is developed. The BN-DM has potential arrayable feature with high device yield of 88%, which can be applied for building a reservoir computing system for digital pattern recognition with high accuracy rate of 96%, and used as an artificial nociceptor to sense the external noxious stimuli and mimic the important biological nociceptor properties. By connecting the BN-DM to a self-made triboelectric nanogenerator (TENG), a self-power mechano-nociceptor system, which can successfully mimic the important nociceptor features of "threshold", "relaxation" and "allodynia" is designed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202200185DOI Listing

Publication Analysis

Top Keywords

two-dimensional h-bn
8
self-power mechano-nociceptor
8
mechano-nociceptor system
8
cfs formation
8
filament engineering
4
engineering two-dimensional
4
h-bn self-power
4
system switching
4
switching variability
4
variability caused
4

Similar Publications

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Raman spectroscopy is a powerful analytical method widely used in many fields of science and applications. However, one of the inherent issues of this method is a low signal-to-noise ratio for ultrathin and two-dimensional (2D) materials. To overcome this problem, techniques like surface-enhanced Raman spectroscopy (SERS) that rely on nanometer scale metallic particles are commonly employed.

View Article and Find Full Text PDF

Two-dimensional Nanosheets by Liquid Metal Exfoliation.

Adv Mater

December 2024

Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions.

View Article and Find Full Text PDF

Recent Developments on 2D-Materials for Gas Sensing Application.

J Phys Condens Matter

December 2024

Department of Physics, IIT Jodhpur, NH 62, Karwar, Jodhpur, Jodhpur, Rajasthan, 342011, INDIA.

The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds.

View Article and Find Full Text PDF

A Review of Bandgap Engineering and Prediction in 2D Material Heterostructures: A DFT Perspective.

Int J Mol Sci

December 2024

Department of Physics, Gachon University, Seongnum-si 13120, Gyeonggi-do, Republic of Korea.

The advent of two-dimensional (2D) materials and their capacity to form van der Waals (vdW) heterostructures has revolutionized numerous scientific fields, including electronics, optoelectronics, and energy storage. This paper presents a comprehensive investigation of bandgap engineering and band structure prediction in 2D vdW heterostructures utilizing density functional theory (DFT). By combining various 2D materials, such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides, and blue phosphorus, these heterostructures exhibit tailored properties that surpass those of individual components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!