GLTSCR1 coordinates alternative splicing and transcription elongation of ZO1 to regulate colorectal cancer progression.

J Mol Cell Biol

Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China.

Published: June 2022

Alternative splicing (AS) and transcription elongation are vital biological processes, and their dysregulation causes multiple diseases, including tumors. However, the coregulatory mechanism of AS and transcription elongation in tumors remains unclear. This study demonstrates a novel AS pattern of tight junction protein 1 (ZO1) regulated by the RNA polymerase II elongation rate in colorectal cancer (CRC). Glioma tumor suppressor candidate region gene 1 (GLTSCR1) decreases the transcription elongation rate of ZO1 to provide a time window for binding of the splicing factor HuR to the specific motif in intron 22 of ZO1 and spliceosome recognition of the weak 3' and 5' splice sites in exon 23 to promote exon 23 inclusion. Since exon 23 inclusion in ZO1 suppresses migration and invasion of CRC cells, our findings suggest a novel potential therapeutic target for CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188103PMC
http://dx.doi.org/10.1093/jmcb/mjac009DOI Listing

Publication Analysis

Top Keywords

transcription elongation
16
alternative splicing
8
splicing transcription
8
colorectal cancer
8
elongation rate
8
exon inclusion
8
elongation
5
zo1
5
gltscr1 coordinates
4
coordinates alternative
4

Similar Publications

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

Structural basis of RNA polymerase complexes in African swine fever virus.

Nat Commun

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.

View Article and Find Full Text PDF

DUO1 Activated Zinc Finger (AtDAZ) protein role in the generative cell body morphogenesis.

Plant Mol Biol

January 2025

National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.

Arabidopsis MYB transcription factor, AtDUO1 regulates generative cell body (GC) morphogenesis from round to semi and fully elongated forms before pollen mitosis-II (PM II). It was hypothesised that DUO1 might regulate morphogenesis through any of its direct target genes or components of the DUO1-DAZ1 network. The developmental analysis of plants harbouring T-DNA insertions in some DUO1 target genes using light and fluorescence microscopy revealed abnormal GC morphogenesis only in daz1 and daz2, but gcs1, trm16, mapkkk10, mapkkk20, tet11, and tip1 all undergo normal elongation indicating that these target genes have no important roles in morphogenesis or may be redundant.

View Article and Find Full Text PDF

Thiolation, a post-transcriptional modification catalyzed by Uba4-Urm1-Ncs2/Ncs6 pathway in three specific transfer RNAs (tRNAs), is conserved from yeast to humans and plays an important role in enhancing codon-anticodon interaction and translation efficiency. Yet, except for affecting effector secretion, its roles in plant pathogenic fungi are not fully understood. Here, we used Magnaporthe oryzae as a model system to illustrate the vital role of s2U34 modification on the appressorium-mediated virulence.

View Article and Find Full Text PDF

The bovine conceptus elongates near Day 16 of development and releases interferon-tau (IFNT), disrupting the endometrial luteolytic mechanism to sustain luteal P4 and pregnancy. Conceptus factors other than IFNT modify local endometrial activities to support pregnancy; however, the microenvironment is largely uncharacterized. We utilized a bovine conceptus-endometrial culture system to elucidate the microenvironment in the form of RNA and protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!