LncRNA KCNQ1OT1-mediated cervical cancer progression by sponging miR-1270 as a ceRNA of LOXL2 through PI3k/Akt pathway.

J Obstet Gynaecol Res

Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Hexi Sports Institute, Tianjin, China.

Published: April 2022

Background: Dysregulated noncoding RNAs participated in progressions of cervical cancer.

Purpose: To verify impacts of KCNQ1OT1 on modulating progressions of cervical cancer cells.

Method: Expressions of KCNQ1OT1, miR-1270, and LOXL2 were analyzed through RT-qPCR and protein expressions of LOXL2, p-AKT, and AKT were validated using western blot. Bindings of miR-1270 with KCNQ1OT1 or LOXL2 were verified using luciferase reporter assay. CCK-8 and flow cytometry evaluated cell viability and apoptosis, respectively. The PI3K/AKT signaling pathway suppressor, LY294002, was applied to treat the cells and the changes of KCNQ1OT1 expression and LOXL2, p-AKT, and AKT protein expressions were examined.

Results: KCNQ1OT1 expression was the highest in HeLa cells but lowest in SiHa cells whose upregulation improved the viability but inhibited the apoptosis in SiHa cells while knockdown of KCNQ1OT1 caused opposite results in HeLa cells. MiR-1270 was sponged and negatively modulated by KCNQ1OT1. MiR-1270 mimics caused low viability and high apoptosis of SiHa cells but miR-1270 inhibitor reverse its roles in HeLa cells. LOXL2, the target of miR-1270, positively interplayed with KCNQ1OT1 but had negative interaction with miR-1270. LOXL2 overexpression promoted viability and decreased apoptosis of SiHa cells but knockdown of LOXL2 restored its effects in HeLa cells. Moreover, LOXL2 and phosphorylated AKT (p-AKT) protein expressions were downregulated by suppressed KCNQ1OT1 and LOXL2 and miR-1270 mimics but promoted by overexpressed KCNQ1OT1 and LOXL2 and miR-1270 inhibitor. Additionally, LY294002 treatment caused low KCNQ1OT1 RNA expression and decreased LOXL2 and p-AKT protein expressions.

Conclusion: KCNQ1OT1/miR-1270/LOXL2 axis modulated viability and apoptosis of cervical cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jog.15177DOI Listing

Publication Analysis

Top Keywords

hela cells
16
siha cells
16
cervical cancer
12
loxl2
12
protein expressions
12
loxl2 p-akt
12
kcnq1ot1 loxl2
12
apoptosis siha
12
kcnq1ot1
11
mir-1270
10

Similar Publications

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

Cancer remains a leading cause of morbidity and mortality worldwide, highlighting the urgent need for novel therapeutic agents. This study investigated the synthesis and biological evaluation of -alkyl ()-chalcone derivatives (-) as potential anticancer agents. The compounds were synthesized via aldol condensation of substituted aldehydes and acetophenones, with structures confirmed by IR, NMR, and mass spectrometry.

View Article and Find Full Text PDF

The Type III Intermediate Filament Protein Peripherin Regulates Lysosomal Degradation Activity and Autophagy.

Int J Mol Sci

January 2025

Department of Experimental Medicine, University of Salento, Via Provinciale Lecce-Monteroni n. 165, 73100 Lecce, Italy.

Peripherin belongs to heterogeneous class III of intermediate filaments, and it is the only intermediate filament protein selectively expressed in the neurons of the peripheral nervous system. It has been previously discovered that peripherin interacts with proteins important for the endo-lysosomal system and for the transport to late endosomes and lysosomes, such as RAB7A and AP-3, although little is known about its role in the endocytic pathway. Here, we show that peripherin silencing affects lysosomal abundance but also positioning, causing the redistribution of lysosomes from the perinuclear area to the cell periphery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!