A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic cost of thermoregulation decreases after the molt in developing Weddell seal pups. | LitMetric

Allocation of energy to thermoregulation greatly contributes to the metabolic cost of endothermy, especially in extreme ambient conditions. Weddell seal (Leptonychotes weddellii) pups born in Antarctica must survive both on ice and in water, two environments with very different thermal conductivities. This disparity likely requires pups to allocate additional energy toward thermoregulation rather than growth or development of swimming capabilities required for independent foraging. We measured longitudinal changes in resting metabolic rate (RMR) for Weddell seal pups (n=8) in air and water from one to seven weeks of age, using open-flow respirometry. Concurrently, we collected molt, morphometric and dive behavior data. Absolute metabolic rate (MR) in air followed the expected allometric relationship with mass. Absolute MR in water was not allometric with mass, despite a 3-fold increase in mass between one and seven weeks of age. Developmental stage (or molting stage), rather than calendar age, determined when pups were thermally capable of being in the water. We consistently observed post-molt pups had lower RMR in air and water (6.67±1.4 and 7.90±2.38 ml O2 min-1 kg-1, respectively) than pre-molt (air: 9.37±2.42 ml O2 min-1 kg-1, water: 13.40±3.46 ml O2 min-1 kg-1) and molting pups (air: 8.45±2.05 ml O2 min-1 kg-1, water: 10.4±1.63 ml O2 min-1 kg-1). RMR in air and water were equivalent only for post-molt pups. Despite the increased energy cost, molting pups spent three times longer in the water than other pups. These results support the idea of an energetic trade-off during early development; pups expend more energy for thermoregulation in water, yet gain experience needed for independence.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.242773DOI Listing

Publication Analysis

Top Keywords

weddell seal
12
energy thermoregulation
12
air water
12
pups
11
water
10
metabolic cost
8
seal pups
8
metabolic rate
8
weeks age
8
post-molt pups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!