Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genome-wide association studies (GWASs) have identified thousands of risk loci for psychiatric and substance use phenotypes, however the biological consequences of these loci remain largely unknown. We performed a transcriptome-wide association study of 10 psychiatric disorders and 6 substance use phenotypes (GWAS sample size range, N = 9725-807,553) using expression quantitative trait loci data from 532 prefrontal cortex samples. We estimated the correlation of genetically regulated expression between phenotype pairs, and compared the results with the genetic correlations. We identified 393 genes with at least one significant phenotype association, comprising 458 significant associations across 16 phenotypes. Overall, the transcriptomic correlations for phenotype pairs were significantly higher than the respective genetic correlations. For example, attention deficit hyperactivity disorder and autism spectrum disorder, both childhood developmental disorders, had significantly higher transcriptomic correlation (r = 0.84) than genetic correlation (r = 0.35). Finally, we tested the enrichment of phenotype-associated genes in gene co-expression networks built from human prefrontal cortex samples. Phenotype-associated genes were enriched in multiple gene co-expression modules and the implicated modules contained genes involved in mRNA splicing and glutamatergic receptors, among others. Together, our results highlight the utility of gene expression data in the understanding of functional gene mechanisms underlying psychiatric disorders and substance use phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090912 | PMC |
http://dx.doi.org/10.1038/s41431-022-01037-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!