Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8873345 | PMC |
http://dx.doi.org/10.1038/s41392-022-00920-4 | DOI Listing |
Front Immunol
January 2025
Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Introduction: Though COVID-19 as a public health emergency of international concern (PHEIC) was declared to be ended by the WHO, it continues to pose a significant threat to human society. Vaccination remains one of the most effective methods for preventing COVID-19. While most of the antigenic regions are found in the receptor binding domain (RBD), the N-terminal domain (NTD) of the S protein is another crucial region for inducing neutralizing antibodies (nAbs) against COVID-19.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
Background: The SARS-CoV-2 Omicron variant, since its initial detection, has rapidly spread across the globe, becoming the dominant strain. It is important to study the immune response of SARS-CoV-2 Omicron variant due to its remarkable ability to escape the majority of existing SARS-CoV-2 neutralizing antibodies. The surge in SARS-CoV-2 Omicron infections among most Chinese residents by the end of 2022 provides a unique opportunity to understand immune system's response to Omicron in populations with limited exposure to prior SARS-CoV-2 variants.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Respiratory interventions including noninvasive ventilation, continuous positive airway pressure and high-flow nasal oxygen generated infectious aerosols may increase risk of airborne disease (SARS-CoV-2, influenza virus) transmission to healthcare workers. We developed and tested a prototype portable UV-C device to sterilize high flows of viral-contaminated air from a simulated patient source at airflow rates of up to 100 l/m. Our device consisted of a central quartz tube surrounded 6 high-output UV-C lamps, within a larger cylinder allowing recirculation past the UV-C lamps a second time before exiting the device.
View Article and Find Full Text PDFPLoS One
December 2024
Chair of Biomedical Physics, Department of Physics & School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
Background: Dark-field radiography has been proven to be a promising tool for the assessment of various lung diseases.
Purpose: To evaluate the potential of dose reduction in dark-field chest radiography for the detection of the Coronavirus SARS-CoV-2 (COVID-19) pneumonia.
Materials And Methods: Patients aged at least 18 years with a medically indicated chest computed tomography scan (CT scan) were screened for participation in a prospective study between October 2018 and December 2020.
mSphere
December 2024
International Vaccine Institute, Seoul, South Korea.
AdCLD-CoV19-1, a chimeric adenovirus-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, was previously reported to elicit robust antibody responses in mice and non-human primates after a single dose. In this study, we conducted a systems serology analysis to investigate changes in humoral immune responses induced by varying doses of the AdCLD-CoV19-1 vaccine in a phase I clinical trial. Serum samples from participants receiving either a low or a high dose of the vaccine were analyzed for antibody features against prototype SARS-CoV-2 spike (S) domains (full-length S, S1, S2, and receptor binding domain), as well as Fc receptor binding and effector functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!