DNA polymerase I is a multifaceted enzyme with one polymerizing and two exonuclease activities. Captan was previously shown to be an inhibitor of this enzyme's polymerizing activity and this report measures the effects of captan on the two exonuclease activities. When the holoenzyme was tested, captan enhanced the degradation of poly(dA-dT), T7 DNA and, to a significantly lesser extent, heat-denatured DNA. However, when the effects of captan were tested as a function of substrate concentration, the stimulatory influence was measured only at high substrate concentrations. At low concentrations of DNA, captan was inhibitory. Inhibition and enhancement each showed an ED50 of the same value (approx. 100 microM). By assaying the two exonuclease activities separately it was shown that the differential effect on the holoenzyme by captan was the result of a combined inhibition of the 3'----5' exonuclease and enhancement of the 5'----3' exonuclease. Klenow fragment with poly(dA-dT) as substrate was used to assay for 3'----5' exonuclease activity. Captan inhibited this exonuclease and the inhibition could be prevented by the addition of greater concentrations of substrate. Holoenzyme and poly(rA)-poly(dT) were used to assay for 5'----3' exonucleolysis, which was enhanced at higher concentrations of substrate in the presence of captan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4781(86)90070-9DOI Listing

Publication Analysis

Top Keywords

exonuclease activities
16
captan
9
dna polymerase
8
effects captan
8
3'----5' exonuclease
8
concentrations substrate
8
exonuclease
7
dna
5
substrate
5
alteration exonuclease
4

Similar Publications

FRET analysis of the unwrapping of nucleosomal DNA containing a sequence characteristic of the + 1 nucleosome.

Sci Rep

January 2025

Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.

Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping.

View Article and Find Full Text PDF

Coupling interactions between the alpha (α) subunit of the polymerase III core (α-Pol III core) and the tau (τ) subunit of the clamp loader complex (τ-CLC) are vital for efficient and rapid DNA replication in Escherichia coli (E. coli). Specific and targeted mutations in the C-terminal τ-interaction region of the Pol III α-subunit disrupted efficient coupled rolling circle DNA synthesis in vitro and caused significant genomic defects in CRISPR-Cas9 dnaE edited cell strains.

View Article and Find Full Text PDF

Magnetic graphene-enhanced exonuclease III assisted amplification strategy driven carbon nanozyme for tri-mode detection of Escherichia coli O157:H7.

Food Chem

January 2025

School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.

View Article and Find Full Text PDF

Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.

View Article and Find Full Text PDF

A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.

Biochemistry

January 2025

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!