A new and systematic review on the efficiency and mechanism of different techniques for OPFRs removal from aqueous environments.

J Hazard Mater

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China. Electronic address:

Published: June 2022

Organic phosphorus flame retardants (OPFRs), as a new type of emerging contaminant, have drawn great attention over the last few years, due to their wide distribution in aquatic environments and potential toxicities to humans and living beings. Various treatment methods have been reported to remove OPFRs from water or wastewater. In this review, the performances and mechanisms for OPFRs removal with different methods including adsorption, oxidation, reduction and biological techniques are overviewed and discussed. Each technique possesses its advantage and limitation, which is compared in the paper. The degradation pathways of typical OPFRs pollutants, such as Cl-OPFRs, alkyl OPFRs and aryl OPFRs, are also reviewed and compared. The degradation of those OPFRs depends heavily upon their structures and properties. Furthermore, the implications and future perspectives in such area are discussed. The review may help identify the research priorities for OPFRs remediation and understand the fate of OPFRs during the treatment processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128517DOI Listing

Publication Analysis

Top Keywords

opfrs
10
opfrs removal
8
systematic review
4
review efficiency
4
efficiency mechanism
4
mechanism techniques
4
techniques opfrs
4
removal aqueous
4
aqueous environments
4
environments organic
4

Similar Publications

Legacy and emerging Organophosphate flame retardants (OPFRs) in water and sediment from the Pearl River Delta to the adjacent coastal waters of the South China Sea: Spatioseasonal variations, flux estimation and ecological risk.

Environ Pollut

January 2025

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.

View Article and Find Full Text PDF

Degradation of organophosphate flame retardants by white-rot fungi: Degradation pathways and associated toxicity.

Sci Total Environ

January 2025

Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.

The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.

View Article and Find Full Text PDF

Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China. Electronic address:

Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums.

View Article and Find Full Text PDF

Target and Nontarget Analysis of Organophosphorus Flame Retardants and Plasticizers in a River Impacted by Industrial Activity in Eastern China.

Environ Sci Technol

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Industrial activities are a major source of organophosphorus flame retardants (OPFRs) and plasticizers in aquatic environments. This study investigated the distribution of 40 OPFRs in a river impacted by major industrial manufacturing plants in Eastern China by target analysis. Nontarget analysis using high-resolution mass spectrometry was further employed to identify novel organophosphorus compounds (NOPs).

View Article and Find Full Text PDF

Rap1 and mTOR signaling pathways drive opposing immunotoxic effects of structurally similar aryl-OPFRs, TPHP and TOCP.

Environ Int

December 2024

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.

Aryl organophosphorus flame retardants (aryl-OPFRs), commonly used product additives with close ties to daily life, have been regrettably characterized by multiple well-defined toxicity risks. Triphenyl phosphate (TPHP) and tri-o-cresyl phosphate (TOCP), two structurally similar aryl-OPFRs, were observed in our previous study to exhibit contrasting immunotoxic effects on THP-1 macrophages, yet the underlying mechanisms remain unclear. This study sought to address the knowledge gap by integrating transcriptomic and metabolomic analyses to elucidate the intricate mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!