Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanomaterial-synergized photodynamic therapy (PDT) and photothermal therapy (PTT), as efficient and non-invasive treatment modalities, have shown significant advantages in fighting different types of cancer. However, neither PTT nor PDT can completely eradicate tumors due to distant metastasis and recurrence of tumors. Recently, photo-immunotherapy have attracted great attention as phototherapy has been reported to participate in immunotherapy by triggering immunogenic cell death (ICD), resulting in the secretion of tumor specific antigen (TSAs) and damage-associated molecular patterns (DAMPs). In particular, emerging interests are biased towards manipulating nanomaterials to form unique drug delivery systems, which are necessary for the combination of phototherapy and immunotherapy to eliminate metastatic tumor cells by promoting the maturation of dendritic cells (DCs) and the infiltration of cytotoxic T lymphocytes (CTLs). This review elaborates on the latest strategies on engineering nanomaterials to enhance the anti-cancer efficiency of synergistic photo-immunotherapy, with emphasis on the activation of anti-tumor immune response, the reversal of tumor immunosuppressive microenvironment (TIME), the regulation of the interaction between immunosuppressive cells and tumor cells, the infiltration of immune cells and improved efficiency of photo-immunotherapy-induced ICD. Current challenges and future opportunities in engineering nanomaterials to modulate synergistic photo-immunotherapy are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2022.121425 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!