Multiomic analyses of two sorghum cultivars reveals the change of membrane lipids in their responses to water deficit.

Plant Physiol Biochem

College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:

Published: April 2022

Drought is one of the main abiotic stresses influencing crop production all over the world. Membranes are sensitive to drought stress and easy to be degraded and modified. Lipidome and transcriptome analyses were applied to analyze the responses of membrane lipids to drought stress in two sorghum (Sorghum bicolor (L.) Moench) cultivars, drought-sensitive cv. Hongyingzi and drought-tolerant cv. Kangsi. In total, 156 lipid compounds were identified and the contents of the predominant ones changed significantly under drought stress. Drought significantly decreased the unsaturation indices (UI) of digalactosyl-diacylglycerol (DGDG), monogalactosyl-diacylglycerol (MGDG), phosphatidylglycerol (PG) and phosphatidylcholine (PC) in both cultivars, except for insignificant changes of UI for DGDG in cv. Kangsi. Transcriptome sequencing analysis identified genes related to membrane lipid remodeling such as phospholipase D α1 (PLDα1), phospholipase D δ (PLDδ), and phospholipase A 2 (PLA2). By integrating transcriptome data and lipidome data, weighted gene co-expression network analysis (WGCNA) identified hub genes, transcription factors and the genes involved in lipid metabolism. Then, the protein and protein interaction (PPI) was analyzed using STRING and the possible candidate genes regulating membrane lipids under drought stress were obtained, including CCT2, CER1, DGK1, DGK5, EMB3174, KCS4, LCB2, PAH1, PLDP1, PKP-β1, and KCS11. The results from this study have the potential to accelerate the process to breed drought-tolerant sorghum lines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.02.015DOI Listing

Publication Analysis

Top Keywords

drought stress
16
membrane lipids
12
lipids drought
8
drought
6
multiomic analyses
4
sorghum
4
analyses sorghum
4
sorghum cultivars
4
cultivars reveals
4
reveals change
4

Similar Publications

metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.

PLoS Genet

January 2025

Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.

Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.

View Article and Find Full Text PDF

Drought stress substantially decreases crop yields by causing flowers and fruits to detach prematurely. However, the molecular mechanisms modulating organ abscission under drought stress remain unclear. Here, we show that expression of CALMODULIN2 (CaM2) is specifically and sharply increased in the pedicel abscission zone (AZ) in response to drought and plays a positive role in drought-induced flower drop in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Anthropogenically induced climate change has significantly increased the frequency of acute weather events, such as drought. As human activities amplify environmental stresses, animals may be forced to prioritize survival over behaviors less crucial to immediate fitness, such as socializing. Yet, social bonds may also enable individuals to weather the deleterious effects of environmental conditions.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana.

Int J Biol Macromol

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!