Identification of carotenoids biosynthesis pathway in Schizochytrium sp. and utilization in astaxanthin biosynthesis.

Enzyme Microb Technol

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China. Electronic address:

Published: May 2022

Carotenoids, an important kind of natural pigments with great potential commercial value, have been widely used in nutrition and health care, cosmetics and aquaculture industries. Schizochytrium sp. is a potential cell factory for lipid nutrition chemicals production including docosahexaenoic acid and carotenoids. The purpose of this study is to mine and identify the carotenoid biosynthesis genes in Schizochytrium sp. Firstly, based on the genomic information of Schizochytrium sp., we obtained the gene sequences of a trifunctional enzyme (CrtIBY), carotene hydroxylase (CrtZ) and carotene ketolase (CrtO) in carotenoids biosynthesis pathway by bioinformatics analysis. Subsequently, using the lycopene-producing E. coli as the host, 22.77 ug/L of β-carotene and 44.31 ug/L of zeaxanthin were synthesized by overexpression of CrtIBY and further co-expression with CrtZ from Schizochytrium sp. After that, 54.78 ug/L of astaxanthin was synthesized using hydroxylase and ketonase from Haematococcus pluvialis. The key enzymes for carotenoids biosynthesis identified in this study is of great significance for further understanding the metabolic mechanism in Schizochytrium sp, which could also provide the functional elements and theoretical support for astaxanthin production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2022.110018DOI Listing

Publication Analysis

Top Keywords

carotenoids biosynthesis
12
biosynthesis pathway
8
schizochytrium
6
biosynthesis
5
identification carotenoids
4
pathway schizochytrium
4
schizochytrium utilization
4
utilization astaxanthin
4
astaxanthin biosynthesis
4
carotenoids
4

Similar Publications

Background: Basella alba L. (Malabar spinach) is a widely consumed leafy vegetable, well known for its nutritional and therapeutic properties. These properties arise from the availability of essential nutrients, phytochemicals, and antioxidant potential, which may vary depending on environmental factors induced by the geographical location.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.

View Article and Find Full Text PDF

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!