The study of functional Brain-Heart Interplay (BHI) from non-invasive recordings has gained much interest in recent years. Previous endeavors aimed at understanding how the two dynamical systems exchange information, providing novel holistic biomarkers and important insights on essential cognitive aspects and neural system functioning. However, the interplay between cardiac sympathovagal and cortical oscillations still has much room for further investigation. In this study, we introduce a new computational framework for a functional BHI assessment, namely the Sympatho-Vagal Synthetic Data Generation Model, combining cortical (electroencephalography, EEG) and peripheral (cardiac sympathovagal) neural dynamics. The causal, bidirectional neural control on heartbeat dynamics was quantified on data gathered from 26 human volunteers undergoing a cold-pressor test. Results show that thermal stress induces heart-to-brain functional interplay sustained by EEG oscillations in the delta and gamma bands, primarily originating from sympathetic activity, whereas brain-to-heart interplay originates over central brain regions through sympathovagal control. The proposed methodology provides a viable computational tool for the functional assessment of the causal interplay between cortical and cardiac neural control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2022.119023 | DOI Listing |
Background: Alzheimer's disease is the most dreaded multifactorial neurological illness for which there is currently no known treatment. Although the exact cause of AD is still unknown, several factors related to lifestyle, genetics, and environment are known to have a significant role in the disease's development. Alzheimer's disease is characterized by neuronal loss, neurofibrillary tangles, and senile plaques.
View Article and Find Full Text PDFBackground: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Brain Institute of Rio Grande do Sul - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Although cognitive decline is a trait related to aging, some individuals are resilient to the aging process, defined as SuperAgers. Studying the neural underpinnings of SuperAgers may improve the understanding of AD pathology. In this study, our aim was to analyze amyloid and neurodegeneration imaging biomarkers in SuperAgers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Medical University of South Carolina, Charleston, SC, USA.
Background: Repetitive transcranial magnetic stimulation enhances cognition in people with mild cognitive impairment (MCI). Whereas conventional treatment requires daily sessions for 4-6 weeks, accelerated intermittent theta burst stimulation (iTBS) shortens the treatment course to just 3 days, substantially improving feasibility of use in people with MCI. We conducted a Phase I safety and feasibility trial of iTBS in MCI, finding preliminary evidence of cognitive improvement.
View Article and Find Full Text PDFNeurodegener Dis Manag
January 2025
Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia.
Huntington's disease (HD) causes progressive cognitive decline, with no available treatments. Computerized cognitive training (CCT) has shown efficacy in other populations, but its effects in HD are largely unknown. This pilot study will explore the effects and neural mechanisms of CCT in HD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!