Assessment of heavy metals should be performed before the development of the selenium-rich soil: A case study in China.

Environ Res

Shandong Institute of Geological Sciences, Jinan, 250013, China; Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Jinan, 250013, China; Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Jinan, 250013, China. Electronic address:

Published: July 2022

The use of selenium (Se)-rich soils in China is an effective method for rural revitalization, but assessment of heavy metals is essential prior to the development of Se-rich soils. This study was focused on the Jiangjin district, a typical Se-rich area located in Sichuan Basin of China, to investigate contamination, influencing factors, and sources of As, Cr, Cu, Cd, Ni, Pb, Sb, and Zn based on 156 topsoil samples. This study analyzed and compared the enrichment factor (EF), Nemerow index (P), geographical information system (GIS), and positive matrix factorization (PMF). Results demonstrate that the average values of As, Cu, Cd, Sb, and Zn in topsoil were higher than the soil background values of western Chongqing by approximately 1.75, 1.11, 1.27, 1.71, and 2.58 times, respectively, indicating that some heavy metals have been enriched in the soils. The polluted areas of As, Cu, Cd, and Zn in topsoil were mainly distributed in the northern and central Jiangjin district, whereas high-Sb soils were located in the southeast. The Cr, Cu, Cd, Pb, and Sb were concentrated in Se-rich soils, indicating that heavy metals pollution should be carefully considered for the utilization of Se-rich soils. Four potential sources of heavy metals were found in this study area: 1) the parent materials (Cr, Ni, Cu); 2) industrial activities with high coal consumption (As); 3) mechanical and chemical industrial activities (Zn, Sb); and 4) transportation and agricultural activities (Pb, Cd). These observations provide a scientific basis for the development, utilization, and protection of Se-rich soil resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.112990DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
se-rich soils
16
assessment heavy
8
jiangjin district
8
indicating heavy
8
industrial activities
8
se-rich
6
soils
6
metals
5
metals performed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!