MicroRNAs (miRNAs) play an important role in gene regulation by degradation or translational inhibition of the targeted mRNAs. It has been experimentally shown that the way miRNAs interact with their targets can be used to explain the indirect interactions among their targets, i.e., competing endogenous RNA (ceRNA). However, whether the protein translated from the targeted mRNAs can play any role in this ceRNA network has not been explored. Here we propose a deterministic model to demonstrate that in a network of one miRNA interacting with multiple-targeted mRNAs, the competition between miRNA-targeted mRNAs is not sufficient for the significant change of those targeted mRNA levels, while dramatic changes of these miRNA-targeted mRNAs require transcriptional inhibition of miRNA by its target proteins. When applied to estrogen receptor signaling pathways, the miR-193a targets E2F6 (a target of estrogen receptor), c-KIT (a marker for cancer stemness), and PBX1 (a transcriptional activator for immunosuppressive cytokine, IL-10) in ovarian cancer, such that epigenetic silencing of miR-193a by E2F6 protein is required for the significant change of c-KIT and PBX1 mRNA level for cancer stemness and immunoevasion, respectively, in ovarian cancer carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876507 | PMC |
http://dx.doi.org/10.3390/ijms23042277 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong 999077, China.
Ovarian cancer is the leading cause of death among all gynecological malignancies, and drug resistance renders the current chemotherapy agents ineffective for patients with advanced metastatic tumors. We report an effective treatment strategy for targeting metastatic ovarian cancer involving a nanoformulation (Bola/IM)─bola-amphiphilic dendrimer (Bola)-encapsulated imatinib (IM)─to target the critical mediator of ovarian cancer stem cells (CSCs) CD117 (c-Kit). Bola/IM offered significantly more effective targeting of CSCs compared to IM alone, through a novel and tumor-specific β-catenin/HRP2 axis, allowing potent inhibition of cancer cell survival, stemness, and metastasis in metastatic and drug-resistant ovarian cancer cells.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Longzihu District, Bengbu, Anhui, China.
Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Division of Oncology, Department of Clinical Sciences Lund, and Lund University Cancer Center, Lund University, Lund, Sweden.
Tertiary lymphoid structures (TLS) in the tumor microenvironment are prognostically beneficial in many solid cancer types. Reports on TLS in high-grade serous tubo-ovarian carcinoma (HGSC) are few, and the prognostic impact is unclear. We investigated mature TLS (mTLS), immature TLS (iTLS) and lymphoid aggregates (LA) in primary adnexal tumors (PTs) and synchronous omental/peritoneal metastases (pMets) of HGSC.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.
Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!